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Abstract— Dynamic ankle joint stiffness defines the rela-
tionship between the position of the ankle and the torque
acting about it and can be separated into intrinsic and reflex
components.Under stationary conditions, intrinsic stiffness can
described by a linear second order system while reflex stiffness
is described by Hammerstein system whose input is delayed ve-
locity. Given that reflex and intrinsic torque cannot be measured
separately, there has been much interest in the development of
system identification techniques to separate them analytically.
To date, most methods have been nonparametric and as a
result there is no direct link between the estimated parameters

and those of the stiffness model. This paper presents a novel
algorithm for identification of a discrete-time model of ankle
stiffness. Through simulations we show that the algorithm gives
unbiased results even in the presence of large, non-white noise.
Application of the method to experimental data demonstrates
that it produces results consistent with previous findings.

I. INTRODUCTION

Joint stiffness can be defined as the dynamic relationship

between the angular position of a joint and the torque

acting about it [1]. It plays a vital role in the control of

posture and is also important in the control of movement,

since it determines the force required to execute a voluntary

displacement [1].

Stiffness at the ankle can be described by the parallel cascade

model shown in Fig. 1. Intrinsic stiffness is generated by the

viscoelastic properties of the joint, passive tissue, and active

muscle fibres. For small perturbations about a fixed operating

point the intrinsic torque is described well by

Ti(t) = Ku(t) +Bv(t) + Ia(t), (1)

where u(t) is the joint angular position, v(t) velocity, a(t)
acceleration and I , B and K are the inertial, viscous and

elastic parameters respectively.

Reflex stiffness is generated by active muscle contraction in

response to reflex activation from stretch receptors in the

muscle. It can be described as a Hammerstein system with

delayed velocity as the input. The input-output relation is

given by

Tr(t) =
gω2

s2 + 2ζωs+ ω2
f(v(t−∆)), (2)

where g is the reflex gain, ω is the natural frequency, ζ the

damping parameter, f(·) the static nonlinearity and ∆ the

delay.
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Fig. 1. Ankle stiffness model. Adapted from [1].

In practice is not possible to measure the intrinsic or reflexive

torques separately, only their noisy sum can be measured [1]

y(t) = Ti(t) + Tr(t) + ξ(t) = TT (t) + ξ(t), (3)

where TT (T ) is the total torque, ξ(t) is a non-white noise

signal [2] and y(t) is the noisy measured torque.

Our laboratory has developed several system identification

techniques to analytically separate the reflex and intrinsic

torques from the measured total torque and position signals

[1]–[3]. Many of these methods are nonparametric and model

the linear dynamic elements using an Impulse Response

Function (IRF). The major advantage of this is that little a

priori information is required, typically only a upper bound

of the system’s memory length is needed. However, the dis-

advantage is that there is no direct relationship between the

IRF estimate and the stiffness. Indeed, a second identification

procedure involving a nonlinear minimization is required to

link the IRF estimate to the parameters of Fig. 1.

In contrast, parametric methods require fewer parameters,

and in the case of discrete-time models it is possible to

link the discrete-time parameter estimates directly to the

continuous-time parameters. The major disadvantage of this

approach is that the system structure and order must be

assumed a prioir.

A parametric method for ankle stiffness identification was

presented by our laboratory some years ago [3], [4]. This

method assumed that the shape of the nonlinearity was

known and represented the linear elements of the intrin-

sic and reflex pathways by a multiple input single output

autoregressive moving average model with exogenous input

(MISO ARMAX). This paper presents a new iterative para-

metric method that improves on this previous work in two

ways. First, the shape of the nonlinearity is estimated as

part of the identification problem rather than being assumed

a priori. Secondly, the linear element is represented as a

MISO Box Jenkins model, a generalization of the ARMAX
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structure, which has the advantage that the model parameter

estimates are asymptotically independent of the noise model

[5]. This means that given enough data the model parameter

estimates will not be affected by the noise model. This is

particularly important in physiological systems where noise

is often composed of many components (e.g. electronic

noise, low frequency drifts, unwanted philological signals,

unmodeled dynamics). Thus, it is very advantageous to use

identification methods which give unbiased results without

requiring detailed noise models.

II. LINEAR DISCRETE TRANSFER FUNCTION

MODEL

The first step in the development is to transform the

nonlinear continuous-time model presented in Fig. 1 into

a discrete-time transfer function model. To this end, the

static non-linearity f(·) will be approximated by a linear

combination of Tchebychev polynomials

v(t−∆) = f(v(t−∆)) =

m
∑

i=0

ciγi[v(t−∆)]. (4)

where γi is the ith Tchebychev polynomial and ci is its

weight.

Next, the linear element of the reflex stiffness will be

transformed to a discrete-time model, using the bi-linear

transformation, to give

Tr(k) =
κ
(

1 + 2z−1 + z−2
)

1 + a1z−1 + a2z−2
v(k − τ), (5)

where z−1 is the backward shift operator, k is the discrete

time, and τ is the discrete delay given by

τ =

⌈

∆

T

⌉

,

where T is the sampling interval.

Substituting (4) in (5) gives

Tr(k) =
1

1 + a1z−1 + a2z−2

m
∑

i=0

κiψi(k − τ), (6)

where

κi = κci,

vi(k − τ) = γi[v(k − τ)],

ψi(k − τ) =
(

1 + 2z−1 + z−2
)

vi(k − τ).

Finally, The total observed torque is given by

y(k) = Ku(k)+Bv(k)+Ia(k)+

m
∑

i=0

κiψi(k − τ)

1 + a1z−1 + a2z−2
+ξ(k).

(7)

Equation (7) is a linear transfer function model with terms

having different denominators. The parameters to be identi-

fied are

ρ = [K B I a1 a2 κ0 . . . κm]
T
. (8)

Note that neither κ, the gain of the linear element, nor the

ci, the polynomial coefficients, can be estimated explicitly,

only their product is obtained. This reflects the uncertainty

in the identification of any Hammerstein system where the

gain may be partitioned arbitrarily between the nonlinearity

and the linear dynamics.

The continuous-time and discrete-time parameters are related

by

ĝ = −4

(

κ̂

â2 + â1 + 1

)

, (9a)

ŵ =
2

T

√

â1 + â2 + 1

â2 − â1 + 1
, (9b)

ζ̂ = −
â2 − 1

[

(â2 + 1)
2 − â1â1

]1/2
, (9c)

where the “ˆ” indicate estimates. The continuous-time reflex

gain (ĝ) depends directly on the discrete-time reflex gain

(κ̂) but unfortunately, as noted above, this is not uniquely

defined. Therefore, to provide a unique solution the following

normalization condition will be imposed

κ̂ =
1

4
(â2 + â1 + 1) , (10)

with the coefficients of the nonlinearity given by

ĉi =
κ̂i
κ̂
, i = 0, . . . ,m. (11)

This normalization results in a value of ĝ = −1 so that

all the gain of the reflex pathway will be assigned to the

nonlinearity.

III. PARAMETER ESTIMATION

Equation (7) represents a mutiple-input, single-output

(MISO) transfer function model, which for simplicity can

be expressed as

y(k) =
BI(z

−1)

AI(z−1)
uI(k) +

BR(z
−1)

AR(z−1)
uR(k) +

H(z−1)

D(z−1)
e(k),

(12)

where uI(k) and uR(k) are the inputs to the intrinsic and

reflexive pathways and

BI(z
−1) = bI0 + bI1z

−1 + · · ·+ bImI
z−mI , (13a)

AI(z
−1) = 1 + aI1z

−1 + · · ·+ aInI
z−nI , (13b)

BR(z
−1) = bR0 + bR1z

−1 + · · ·+ bRmR
z−mR , (13c)

AR(z
−1) = 1 + aR1z

−1 + · · ·+ aRnR
z−nR , (13d)

D(z−1) = 1 + d1z
−1 + · · ·+ dqz

−q, (13e)

H(z−1) = 1 + h1z
−1 + · · ·+ hqz

−p, (13f)

define the filters associated with the models for the intrinsic

stiffness, reflex stiffness and noise. The uncontrolled input

e(k) is assumed to be Gaussian white noise (GWN) with

mean zero and variance σ2.

The one-step ahead prediction of (12) is [6]

ŷ(k|k−1) =
D

H

[

BI
AI

uI(k) +
BR
AR

uR(k) +

(

H

D
− 1

)

y(k)

]

,

(14)
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where the notation (z−1) has been dropped for simplicity.

The prediction errors are given by

ǫ(k) = y(k)− ŷ(k|k − 1)

=
H

D

[

y(k)−
BI
AI

uI(k)−
BR
AR

uR(k)

]

. (15)

Now define a norm given by the sum of square errors

V (AI , BI , AR, BR, D,H) =
1

N

N
∑

k=1

1

2
ǫ(k)2, (16)

where N is the total number of elements. The objective

of the identification is to determine the set of parameters

(AI , BI , AR, BR, D,H) that minimize the norm (16). This

will occur when the partial derivatives of (16) w.r.t the

parameters are equal to zero.

The partial derivatives of V with respect to the parameters

of the intrinsic system are given by

∂V

∂bIi
=
∑

k

[AIyIf (k)−BIuIf (k)]uIf (k − i), (17a)

∂V

∂aIi
=
∑

k

[AIyIf (k)−BIuIf (k)] x̂If (k − i), (17b)

where

yIf(k) =
D

AIH

[

y(k)−
BR
AR

uR(k)

]

=
D

AIH
yI(k), (18a)

uIf(k) =
D

AIH
uI(k), (18b)

x̂If (k) =
D

AIH

[

BI
AI

uI(k)

]

=
D

AIH
x̂I(k). (18c)

Here x̂I(k) is an estimate of the contribution of uI to the

total output and the subscript f indicates that the signal was

filtered by D/(AIH). The signal x̂If (k) is known in the

literature as instrumental variable [6], [7].

All the partial derivatives will be equal to zero when V is

minimized. In consequence, equations (17) can be reformu-

lated to be

0 =
∑

k

[

yIf (k)− ϕ
T
If (k)θI

]

uIf (k − i), i = 1, · · · ,mI ,

(19a)

0 =
∑

k

[

yIf (k)− ϕ
T
If (k)θI

]

x̂If (k − i), i = 1, · · · , nI ,

(19b)

where

ϕIf (k) = [−yIf(k − 1), · · · ,−yIf(k − nI),

uIf(k), · · · , uIf(k −mI)]
T
,

(20)

and

θI = [aI1, · · · , aInI
, bI0, · · · , bImI

]
T
. (21)

Equations (19a) and (19b) can be combined to give

0 =
∑

k

[

ϕ̂If (k)yIf (k)− ϕ̂If (k)ϕ
T
If (k)θI

]

, (22)

where

ϕ̂If (k) = [−x̂If (k − 1), · · · ,−x̂If (k − nI),

uIf(k), · · · , uIf(k −mI)]
T
.

(23)

Rearranging (22) gives the estimator of (21) as

θ̂I =

[

∑

k

ϕ̂If (k)ϕ
T
If (k)

]

−1 [

∑

k

ϕ̂If (k)yIf (k)

]

. (24)

A similar development for the reflex component gives the

estimator of the reflex parameters:

θ̂R =

[

∑

k

ϕ̂Rf (k)ϕ
T
Rf (k)

]

−1 [

∑

k

ϕ̂Rf (k)yRf (k)

]

,

(25)

were

ϕRf (k) = [−yRf (k − 1), · · · ,−yRf(k − nR),

uRf (k), · · · , uRf (k −mR)]
T ,
(26a)

ϕ̂Rf (k) = [−x̂Rf (k − 1), · · · ,−x̂Rf (k − nR),

uRf (k), · · · , uRf (k −mR)]
T
.

(26b)

and

yRf (k) =
D

ARH

[

y(k)−
BI
AI

uI(k)

]

=
D

ARH
yR(k),

(27a)

uRf (k) =
D

ARH
uR(k), (27b)

x̂Rf (k) =
D

ARH

[

BR
AR

uR(k)

]

=
D

ARH
x̂R(k). (27c)

A. The identification problem

A similar procedure could be used to estimate the re-

maining elements of the system (H and D). However, the

system and noise models are asymptotically independent thus

is possible to set D = H = 1 and still obtain unbiased

estimates of θ̂I and θ̂R [5], [7].

Another issue with this formulation is that, as may be seen

in equations (18a) and (27a), yI(k) requires BR and AR to

be known and, yR(k) requires BI and AI . Thus, θ̂I and θ̂R
are interdependent. We propose to solve this problem using

the following iterative algorithms. Note that the algorithm 1

calls the algorithms 2a and 2b during each iteration.

Algorithms 2a and 2b are similar to the Simplified Refined

Instrumental Variable (SRIV) method proposed by Young

[7], so it is appropriate to call algorithm 1 MISO SRIV.
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TABLE I

SIMULATION RESULTS: VAF (%) BETWEEN PREDICTED TORQUES WITH DIFFERENT ALGORITHM AND NOISE-FREE TORQUES. SNR=10DB

Intrinsic Torque Reflex Torque Total Torque

5th PCTL 50th PCTL 95th PCTL 5th PCTL 50th PCTL 95th PCTL 5th PCTL 50th PCTL 95th PCTL

MISO SRIV 99.6% 99.9% 99.9% 95.9% 97.9% 99.4% 99.4% 99.7% 99.9%

PC 96.5% 99.2% 99.9% 39.2% 86.9% 95.8% 96.5% 98.6% 99.6%

ARMAX - - - - - - 60.6% 81.2% 85.6%

Algorithm 1: Given y, uR and uI estimate θ̂I and θ̂R.

1. Assume that θ̂0R = 0. Set yI = y and compute

θ̂0I =
[

∑

ϕIϕ
T
I

]

−1 [∑

ϕIyI

]

. Set i=0.

2. Use θ̂iI to compute x̂I =
BI
AI

uI .

3. Compute ŷR = y − x̂I . Use ŷR, uR and

algorithm 2a to estimate θ̂i+1

R .

4. Use θ̂i+1

R to compute x̂R =
BR
AR

uR.

5. Compute ŷI = y − x̂R. Use ŷI , uI and

algorithm 2b to estimate θ̂i+1

I .

6. Check whether θ̂i+1

I and θ̂i+1

R are significantly different

from θ̂iI and θ̂iR. If so, set i=i+1 and go to 2.

Otherwise, terminate.

Algorithm 2a: Given yR and uR estimate θ̂R

1. Compute θ̂0R =
[

∑

ϕRϕ
T
R

]

−1 [∑

ϕRyR

]

. Set j = 0.

2. Using θ̂jR compute yRf , uRf and x̂Rf .

3. Compute θ̂j+1

R using the current values of yRf , uRf
and x̂Rf and equations (26a), (26b) and (25).

4. Check whether θ̂j+1

R is significantly different from θ̂jR.

If so, set j=j+1 and go to 2. Otherwise, terminate.

Algorithm 2b: Given yI and uI estimate θ̂I

1. Compute θ̂0I =
[

∑

ϕIϕ
T
I

]

−1 [∑

ϕIyI

]

. Set j = 0.

2. Using θ̂jI compute yIf , uIf and x̂If .

3. Compute θ̂j+1

I using the current values of yIf , uIf
and x̂If and equations (20), (23) and (24).

4. Check whether θ̂j+1

I is significantly different from θ̂jI .
If so, set j=j+1 and go to 2. Otherwise, terminate.

IV. SIMULATION

The algorithm was evaluated using a challenging but

realistic scenario in which the reflex contribution to the noisy

total torque power was small (10 %). The continuous-time

model shown in Fig. 1 was simulated using Simulink. Noise

was added to the simulated output with amplitude adjusted

to give a SNR of 30dB and 10dB. The noise signal was

designed to have characteristics similar to those observed

experimentally. Thus it was the sum of a GWN simulating

electronic noise (σ = 0.08), a 1Hz low-pass filtered Gaussian

signal to simulate physiological noise (σ = 0.5) and, a 60

Hz sinusoidal to simulate ambient noise (σ = 0.03). The

position input was a pseudo random multi level sequence

whose switching rate was selected from a random variable

with uniform distribution with values between 200 and

300 ms [8]. The inputs used were samples of those used

experimentally (see Fig 3a). Each simulation was run for 60

s at 1 kHz and then decimated to 200 Hz for analysis. A

set of 100 realizations were simulated using a new input and

noise signals in each realization.

A. Results

The identification results obtained with the MISO SRIV

method were compared to those given by the nonparametric

parallel-cascade (PC) algorithm described by Kearney, et.

al. [1] and the parametric ARMAX method introduced by

Kukreja, et. al. [3]. Some initial remarks are necessary: First,

the PC method is nonparametric, so there is no direct link

between the identified parameters and the ankle stiffness

model parameters. Therefore, we compared the algorithms

on the basis of their predictive ability measured in terms of

the Variance Accounted For (%VAF) between the torques

(predicted by a free-run of the estimated model) and the

noise-free simulated torques. Second, the ARMAX method

does not yield independent estimates of the intrinsic and

reflex torques, so only the total torque can be compared.

Table I presents the %VAFs obtained for the different al-

gorithms. The probability densities of the %VAFs were not

Gaussian therefore results are presented as the 5th, 50th and

95th percentiles (PCTL) observed in the 100 simulations.

The PC and MISO SRIV algorithms gave similar results

for intrinsic torque. Median %VAF was close to 100% in

booth cases, although with the MISO SRIV algorithm the

90% range (the difference between the 95th and 5 PCTLs),

a measure of the spread of the distribution, was somewhat

smaller (3.4% compared to 0.3%). There was a large diffe-

rence between the PC and the MISO SRIV algorithms for

reflex torque. The median %VAF with the nonparametric

method was fairly good (86.9%) but the 90% range was

large (55.5%). In contrast, the MISO SRIV algorithm had

a better median %VAF (97.9%) and much lower 90% range

(4%). Finally, when it comes to the total torque there was

not much difference between the PC and the MISO SRIV

algorithms (due to the relatively small contribution of the

reflex torque) but, the results with the new algorithm were

slightly superior.

The ARMAX method gave the worst results; the median

%VAF was significantly lower and had the highest 90% range

(25% compared to 3.1% with the PC and 0.5% with the

MISO SRIV methods).

Given the excellent predictive ability of the MISO SIRV

method we next examined how well it estimated the para-

TABLE II

SIMULATION RESULTS: ESTIMATION OF THE PARAMETERS. SNR= 10DB

K B I a1 a2 Reflex Gain

True 50 1.65 0.0152 -1.952 0.955 4

Estimated 49.9 1.73 0.0145 -1.952 0.955 4.2

SD 1.6 0.02 0.0004 0.004 0.004 0.5
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Fig. 2. Simulation Results: Estimation of the nonlinearity shape for 100
simulations (blue lines), true nonlinearity shape (red line). a) SNR = 30 dB,
b) SNR = 10 dB.

meters. Table II shows that the expected values of both θ̂I
and θ̂R, for the 100 simulations, were very close to the true

values and the SD of each parameter were small compared

with the mean values. The reflex gain was computed as the

slope of the nonlinearity by fitting a straight line between

the appropriate points.

Fig 2 presents the true shape of the nonlinearity (half-

wave rectifier, red lines) and the shapes estimated for the

differet simulation runs with the MISO SRIV algorithm (blue

lines). At high SRN (Fig 2a) the algorithm captured well

the nonlinearity, but as the SNR decreased there was more

variability (Fig 2b). Even so, the %VAF was not greatly

affected.

B. Discussion

There were three main findings of the simulation study.

First the MISO SIRV provides the best prediction of the three

methods. Second, it gives unbiased estimate of the discrete

parameters even in the presence of large amounts of colored

noise. Thirdly, it captures the shape of the nonlinearity well.

The high accuracy of the reflex parameters estimates is

remarkable given that the effective SNR for the reflex torque

was very low since the intrinsic torque acts as an additional

noise signal. Indeed, the effective SNR was -20dB for the

case of 10dB of additive noise. It can also be noted that the

estimated elastic (B) and intrinsic (I) parameters are slightly

bias. This probably happened because those parameters are

very small compared to K .
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Fig. 3. a) Position input and b) total torque recorded during one experiment.
Ankle position: + 0.2 rad.

TABLE III

REAL DATA RESULTS: ESTIMATION OF THE CONTINUOUS-TIME

PARAMETERS FOR DIFFERENT ANKLE POSITIONS

-0.2 rad -0.1 rad 0 rad +0.1 rad +0.2 rad

K̂ 27.8 28.9 29.7 44.8 49.5

B̂ 0.79 0.80 0.80 0.74 0.76

Î 0.016 0.016 0.012 0.017 0.017

ω̂ 16.1 15.8 15.6 14.8 13.6

ζ̂ 0.65 0.62 0.62 0.65 0.62

Reflex Gain 6.9 6.9 11.3 14.3 18.1

RC 9.3 % 11.9 % 24.7 % 26.4 % 30.8 %

VAFMISO SRIV 92.8 % 91.3 % 87.5 % 90.5 % 87.1 %

VAFPC 94.1 % 93.5 % 85.9 % 91.3 % 88.3 %

V. APPLICATION TO EXPERIMENTAL DATA

The algorithm was also validated with experimental data.

The subject lay supine with the left leg immobilized and

the foot attached firmly to a pedal connected to a hydraulic

actuator. The subject pushed slightly on the pedal to generate

an average torque equal to 5% of maximum platarflexing

voluntary contraction. The same input used in simulations

was applied to the ankle through the actuator. Ankle position

and torque were sampled at 1000 Hz for 75 s and then

decimated to 200 Hz for analysis. Trials were performed at

five different position: neutral position (0 rad), two plantar

flexed positions (-0.1 rad and -0.2 rad), two dorsiflexed

positions (+0.1 rad and +0.2 rad). Subjects were instructed to

maintain a constant level of contraction and not to react to he

perturbations. Fig. 3 shows a small segment of the position

input (panel a) and the total torque (panel b) recorded during

one trial.

These data were used to estimate ankle stiffness using both

the MISO SIRV and the PC methods. The first half of each

trial was used for estimation and the last half for validation.

A. Results

Table III shows the %VAF between the measured and

predicted torque with the PC and the MISO SRIV algorithms

for the validation data. The %VAF was high (≥ 85.9%) for

both methods at all positions indicating that both models

described that data well.

The elasticity (K) and the reflex gain (the slope of the

nonlinearity) changed the most. Both increased when the

ankle was moved from plantarflexion to dorsiflexion. The

relative reflex contribution (RC) to the total measured torque

was lowest (9.3%) in the most plantarflexed positions and

largest (30.8%) at the most dorsiflexed positions.

The natural frequency (ω̂) decreased slightly as the ankle was

moved from plantarflexion to dorsiflexion. Other parameters

showed no consistent trend.

The shape of the nonlinearity is not shown but was similar

to a half-wave rectifier in all the trials.

B. Discussion

The experimental data demonstrated that both intrinsic and

reflex contributions increased significantly when mean ankle

positions was moved from plantarflexion to dorsiflexion.

These results are consistent with what has been reported

previously [9]. It is interesting to note that the intrinsic
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stiffness was almost constant when the ankle moved from

plantarflexion to neutra position but increased substantially

when it was moved from neutral position to dorsiflexion.

This is consistent with previous findings which have shown

that K is more or less constant in the midrange.

VI. CONCLUSIONS

We have presented a new iterative algorithm based on the

minimization of prediction error approach for identification

of parallel-cascade model of ankle stiffness. Simulations

demonstrated that this algorithm estimate the parameters of

the ankle stiffness model accurately even when the contri-

bution of the reflex torque was very low. Further, a pilot

experimental study demonstrated that it produces results

consistent with previous findings.

The advantage of this algorithm compared with similar

methods is that it yields accurate results even in the presence

of colored noise and that it gives a direct estimate of the

parameters of the model with low variance.

It should be noted that under some conditions reflex dynam-

ics required a third order dynamics [9]. The MISO SRIV

algorithm can be extended to test this hypothesis simply

by increasing the order of the filters BR(z
−1)/AR(z

−1)
appropriately. This will be pursuit in a future study.
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