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Abstract-Noise characteristics play an important role in 
evaluating tools developed to study biomedical systems. Despite 
usual assumptions, noise in biomedical systems is often non
white or non-Gaussian. In this paper, we present a method to 
analyze the noise component of a biomedical system. We demon
strate the effectiveness of the method in the analysis of noise in 
voluntary ankle torque measured by a torque transducer and 
eye movements measured by electro-oculography (EOG). 

I. INTRODUCTION 

Noise is an unwanted random series that corrupts the 
signals of interest [l]. Biomedical signal measurements are 
often contaminated with considerable noise from different 
sources, such as: thermal noise, interfering signals from the 
body, environment or electrode movements [2]. 

Analysis of noise is an important problem and is well 
studied in medical imaging [l], [3]. Noise characteristics 
also play a leading role in selecting identification tools for 
biomedical systems where the goal is to estimate a model 
that represents the input-output relation. Often, in the model 
formulation, the noise signal is assumed to be independently 
and identically distributed i.i.d. (white) and/or Gaussian [4]

[8] when algorithms are chosen. Yet, this assumption may 
not be valid in reality. As a result, the efficiency and robust
ness of the applied methods could be evaluated incorrectly 
and cause biased identifications. Moreover, a realistic noise 
model can be used in creating virtual data sets for the 
validation of selected methods for system identification, data 
classification, etc. 

Noise analysis can also provide useful physiological infor
mation. For example, in the identification of joint stiffness us
ing small signal models, voluntary torques appear as a noise 
background. The characteristics of this noise component can 
reveal the bandwidth of the torque or the frequency of a 
tremor if present [9], [10]. 

In closed-loop models with output feedback, the additive 
output noise is combined with the input reference signal. 
This results in a challenging system identification which 
requires special treatments to account for the input noise. 
Consequently, knowledge about the noise characteristics is 
important in such problems [11], [12]. 

In this work, we present a method to analyze a biomedical 
noise signal. Our hypothesis is that this signal is not neces
sarily white and Gaussian and might have its own dynamics 
that can differ from that of the system. We model the noise 
signal as the output of a stochastic system whose input is a 
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Fig. 1. Deterministic and stochastic components of a biomedical system. 

white random sequence. Thus, we fit an autoregressive model 
(AR) model. This model is equivalent to an impulse response 
function (IRF). Consequently, the method is non-parametric 
and does not require much a priori information about the 
model order. We then use this method to analyze two case 
studies during near constant self-generated responses (no 
control stimulus): (i) torque measurements from the ankle 
joint while maintaining the joint torque and (ii) EOG signals 
recorded in the dark while attempting to fix gaze in space. 

The rest of the paper is organized as follows: Section II 
formulates the model and describes the methodology. Section 
III provides results for the two case studies. Section IV 
concludes with a summary and potential applications. 

II. METHODS 

Fig. 1 shows a schematic of a biomedical system. The 
input u( t) enters the deterministic plant. A white signal e( t) 
enters the stochastic plant which generates the additive noise 
signal n(t). Thus, the measured output is: z(t) = n(t)+y(t). 

The objective is to analyze the stochastic system that 
generates the noise signal. Therefore, the first step is to 
remove the deterministic system by recording the output 
signal in the absence of any forced input component. The 
observed noise sequence (output) is then a combination of 
three main components: (i) noise as a result of electronics, 
(ii) output of the biomedical system with only an internal 
set-point, and (iii) a non-stationary component as a result of 
the time-varying nature of the biomedical system. 

Noise generated by the electronics generally contains a 
white random sequence introduced by thermal/shot noise, 
plus 60Hz with harmonics induced by the power line and 
its nonlinear elements. This component can be observed by 
recording from the electronics in the absence of the biomed
ical system. For example, Fig. 2 shows the characteristics 
of the recorded signal from a torque transducer intended for 
the ankle joint torque measurements, but in the absence of 
a subject. The sampling frequency was lKHz for 120s of 
data. The frequency structure shows the white dynamics of 
the noise (flat spectrum), carrying spikes of 60Hz noise with 
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Fig. 2. Noise due to electronics in recording torque with no subject: (A)
10s realization of the noise; (B) frequency spectrum.

its harmonics, as well as the dynamics of the anti-aliasing

filter (low-pass filter at 480HZ) causing low power at high

frequencies.

We selected an AR structure to describe the stochastic

system dynamics. The AR model is straightforward to im-

plement, does not require much a priori information and the

model formulation is linear in its parameters. However, there

are some challenges.

First, biomedical system dynamics usually change very

slowly in time (e.g. fatigue, alertness). Hence, the non-

stationary component of the noise will also have low-pass

dynamics. To capture this, an AR model would require a

large memory, i.e. a large number of parameters in Equ. 2

below, equal to data length. To avoid this problem, we can

either high-pass filter the data at a low break frequency or

remove a polynomial trend from the data record.

Second, there is the issue of 60Hz noise and its harmonics

(Fig. 2). Modeling this component within the AR model

also requires an IRF with many lags. Instead, we remove

these periodic components before fitting the AR model, using

notch filters at those frequencies.

For instance, a non-stationary behavior is observed in a

torque record from a subject’s ankle joint (Fig. 3.A) while

maintaining constant torque level (120s with 1KHz sampling

rate). The estimated amplitude histogram (Fig. 3.B) does

not show a perfect Gaussian distribution. The frequency

spectrum (Fig. 3.C) shows a non-white signal that has

relatively large power at low-frequencies besides the 60Hz

noise harmonics and anti-aliasing dynamics of Fig. 2.

Once the periodic and non-stationary components are

removed, we fit an AR model to the remaining noise, r(t),
assuming a white input, e(t), to the stochastic model. The

AR structure with na IRF lags has the following formulation:

r(z)

e(z)
=

1

1 + a1z
−1 + · · ·+ ana

z−na

(1)

where z is the Z transform variable and ai for i = 1, · · · , na

are the unknown model coefficients to be estimated. Let N

be the number of recorded data samples, i.e. t ∈ {1, · · · , N}.
We expand Equ. 1 to the following data equation:
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Fig. 3. Recorded torque from ankle joint in presence of a subject; (A) Time
realization; (B) Amplitude frequency histogram; (C) Frequency spectrum.
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We solve Equ. 2 using least-squares approach:

[

â1 â2 · · · âna

]

T
= Ψ†

[

r(1) r(2) · · · r(N)
]

T

(3)

where † is the pseudo inverse operation and âi for i =
1, · · · , na are the estimated coefficients. e(t) needs to be

examined for whiteness since this was the AR model assump-

tion. Note that here, e(t) is also the fit residual. A sufficient

number of lags, na, is needed to obtain a white e(t).

III. RESULTS

In this section, we verified the method by studying two

bio-signals. The first was the ankle joint torque recorded

using a torque transducer. The second was eye movements

recorded using EOG sensors. In these experiments the re-

cruited subjects gave informed consent to the experimental

procedures, which had been reviewed and approved by

McGill University Institutional Review Board.

A. Voluntary Torque Analysis

The subject laid supine while the left foot was attached to

a position-servo hydraulic actuator. The angle between foot

and shank was set to 90◦. The actuator was much stiffer than

the subject ankle, i.e. subjects could not move the actuator.

We recorded the ankle torque from a torque transducer

placed in series between the ankle and actuator for 120s

with a sampling rate of 1KHz. The experimental conditions

were similar to those explained in [13]. But here, subjects

were asked to maintain a constant torque. Fig. 3.A shows

a realization of the recorded torque. We divided data into

two segments of 60s and analyzed each with the presented
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Fig. 4. IRF of the estimated AR model for torque recordings.
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Fig. 5. Magnitude of the transfer function of the identified torque noise
AR model.

method. The non-stationary component was removed by

high-pass filtering (break frequency of 0.01Hz) and 60Hz

harmonics were notch-filtered. The number of lags na for

the AR model was set to 145 in order to obtain white e(t).
Fig. 4 shows the estimated AR model (only the significant

first 40 lags are shown). The IRF shows gradual increase

in time and an oscillation. Thus, it demonstrates that the

stochastic system had a low-pass behavior plus an oscillatory

component. Fig. 5 shows the magnitude plot of the identified

AR models for both data segments. Both models had overlap-

ping dynamics, so the noise characteristics were consistent

in both data segments. Thus, the identified voluntary torque

model is a low-pass filter with a resonance at 9Hz, in the

range of reported physiological tremor [10].

Fig. 6 shows the autocorrelation coefficient and amplitude

structure of e(t). The autocorrelation coefficient had a spike

at zero. This shows that e(t) was white and the AR model

assumption was valid. The amplitude structure of e(t) was

also well described with a Gaussian distribution.

B. EOG Analysis

In this experiment, EOG surface electrodes were placed

on the skin on the temporal side of each eye and on the
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Fig. 6. Analysis of the fit residual, e(t): (A) Autocorrelation coefficient,
(B) Amplitude frequency histogram.
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Fig. 7. Recorded EOG in the dark (A) Time realization; B) Amplitude
frequency histogram; (C) Frequency spectrum.

forehead (ground). The subject was seated in the dark for 20

minutes for stabilization of ocular and electrode potentials

in the dark. The subject was then secured on a chair with

the head restrained to a head rest and asked to fixate on

a flashed target appearing for 5s and extinguished for 15s.

A new flashed target appeared at a different location every

20s repeating the pattern. Eye movements were recorded in

darkness with stationary head at a sampling rate of 1KHz.

The experimental conditions and calibration procedure are

described in [14], where the study explored gaze holding in

the dark with no visual inputs. Fig. 7.A shows a realization

of such recorded EOG for one 15s fixation interval with

the non-stationary trend marked in red. Such trends in the

dark are caused by gaze holding decay (electrode drift

was removed in the calibration procedure). The histogram

(Fig. 7.B) is clearly different from a Gaussian model due

to this non-stationarity and 60Hz harmonics from electrical

noise in EOG recordings. The frequency spectrum (Fig. 7.C)

also shows low-pass behavior and confirms 60Hz harmonic

components.

We removed the non-stationary trend by high-pass filtering

at 0.5Hz and notch filtering the 60Hz harmonics. The number

of lags na for AR model was set to 250 to obtain white fit

residuals, e(t).

Fig. 8 shows the estimated AR model for the remaining

noise (only the significant first 40 lags are shown). It has

a low-pass behavior plus an oscillatory component. Fig. 9

shows the magnitude plot of the identified AR models for

two data segments recorded during the same experiment but

at different fixation points [14]. Estimated noise models from

both data segments have similar dynamics which implies that

the fixation point did not modulate the noise properties. Thus,

the identified EOG noise model was a low-pass filter with

a resonance at 2Hz, in the range of reported micro-saccade

frequency during fixation [15].

Fig. 10 provides the autocorrelation coefficient and am-

plitude structure of e(t). Whiteness of e(t) from its auto-

correlation confirms that the AR model order was correct.

999
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IV. CONCLUSION

Assuming white/Gaussian noise is not always valid in

biomedical systems. In this paper, a method is presented

to analyze noise in biomedical systems. It includes record-

ing from subjects in the absence of controlled inputs. We

propose removing low-frequency non-stationary components

and 60Hz noise harmonics to study imbedded stochastic

properties - that is, high-pass filtering at appropriate frequen-

cies to remove contributions from the associated determinis-

tic system, and notch filtering electronic noise components.

The dynamics of the remaining noise is then represented by

an AR model. This non-parametric method can be adopted

in different applications with only one easily adjustable free

parameter, i.e. the number of lags in the IRF model.

We applied our method to analyze noise in voluntary

torque measurements and EOG recordings, when the task

was simply to maintain the set-point. Both types of record-

ings were shown to contain noise signals that were not neces-

sarily Gaussian nor white. Modeling the noise revealed the

frequency of physiological tremor in torque measurements

and micro-saccades in EOG recordings. Similar subconscious

components can be found in all biomedical recordings and

must be taken into account in order to obtain unbiased mod-

els for the deterministic system reacting to forced stimuli.

Hence, noise properties cannot be assumed a priori. They

must be examined in each case in order to select correct

algorithms for model identification.

Two other applications can be envisioned. First, by repli-

cating noise components in model simulations (restoring

stochastic model and even electrical noise harmonics), one

can create realistic virtual data on which to validate pro-

posed identification algorithms. The advantage would be to

test convergence and robustness in the presence of noise

similar to experimental conditions rather than relying on

white/Gaussian assumptions. Here, both temporal and am-

plitude characteristics of expected noise could be duplicated.

Second, biological noise characteristics in general can vary

with context (e.g. limb position, load, stimulus conditions),

or even with/without the presence of a controlled input. Thus,

noise needs to be examined for each protocol and laboratory.

Finally, unmasking noise components can lead to more ac-

curate deterministic models. For example, deciding whether

components like tremor should be included in the charac-

teristics of the deterministic system, or left to the stochastic

component. Or in a similar vein, whether the low-frequency

trends are really noise, or are consistent with the dynamics

or poles of the deterministic system (e.g. decay profiles).

Fig. 9. Magnitude of the transfer function of the identified EOG noise AR
model.
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Fig. 10. Analysis of the fit residual, e(t): (A) Autocorrelation coefficient,
(B) Amplitude frequency histogram.
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