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Abstract— Generation of torque around a joint usually in-
volves the activation of several agonist muscles and may also
involve the co-activation of antagonist muscles. Therefore, a
valid model for the dynamic relation between surface EMG (an
indirect measured of the muscle’s neural input) and the torque
should take the form of a Multiple-Input/Single-Output (MISO)
system to account for the contributions of the different muscles.
This paper presents a new method to accurately estimate
the dynamic EMG/Torque relation when multiple muscles are
active simultaneously. Using our method we found that flexor
and extensor muscles at the ankle have different dynamic
properties.

I. INTRODUCTION

The characterization of the relation between the measured

surface electromyogram (EMG) and the resulting force or

torque has been an active topic of research for more than half

a century [1]. A common approach to model this relation

is to first extract the EMG envelope and then determine a

static model between it and the torque. This method, although

successful at predicting torque from EMG signal, involves

complex filtering to extract the envelope from the raw data,

and characterizes the actuator (i.e the muscle) solely by its

gain, ignoring all but its steady state properties [2].

A more comprehensive approach is to characterize the

EMG/Torque relation as a linear dynamic system non-

parametrically by its impulse (or frequency) response, or

parametrically by its transfer function. There is general

agreement that under isometric conditions these dynamics

can be modeled as a second-order, low-pass filter [1], [3].

While past studies have made important contributions

regarding the dynamic characteristics of the muscle, they

all identified a Single Input, Single Output (SISO) system

assuming that only one agonist muscle was generating the

torque and that the antagonist muscles remained inactive [1],

[3]. However, usually several agonist muscles are involved in

generating torque at a joint, and vigorous contractions may

be accompanied by co-contractions of antagonist muscles

[4].

In light of these observations, it is clear that an appropriate

EMG/Torque model should account for the contributions of
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all the muscles involved and so it should take the form of a

Multiple Input, Single Output (MISO) system.

Recently, we described a new Instrumental Variable (IV)

based algorithm for the identification of MISO transfer

function models [5]. The algorithm is based on the refined

IV method [6] and a back-fit iteration [7].

This paper describes how this algorithm can be used to

determine the dynamic relation between EMG and torque

when multiple muscles are involve in the generation of

torque.

This paper is organized as follows: Section II presents

a simulation study which shows that the back-fit algorithm

is robust to the multiplicative noise characteristic of EMG.

It then compares three algorithms for the identification of

MISO transfer function models and shows that our algorithm

performs best. Section III demonstrates the application of

the algorithm to experimental data acquired during agonist-

antagonist contractions at the ankle. Section IV discusses

results and outlines some possible applications.

II. SIMULATION STUDY

EMG signals are characterized by large multiplicative

noise [2], which will cause some parametric identification

techniques to estimate the EMG-torque dynamics incorrectly

[8]. We have shown that our IV-based, back-fit algorithm

gives un-biased results for high levels of additive output

noise [5], but its behavior with multiplicative input noise was

not studied. Nor has the performance of other MISO system

identification techniques (e.g., Matlab PEM [9]) have been

examined for this scenario. Finally, it can be argued that if

there is no co-contraction then the problem can be treated as

a series of SISO identifications.

We though it important to investigate these questions via

a simulation study.

A. Simulated model

The MISO transfer function model shown in Fig. 1 was

simulated using Matlab at a sampling rate of 1 kHz for

120s. The inputs were s1(t) and s2(t) while d1(t) and d2(t)
were nonnegative, stationary, colored, random sequences that

were statistically independent of s1(t) and s2(t). The noise

corrupted inputs were

ui(t) = si(t)di(t).
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Fig. 1. Simulated model. The noise corrupted signals used for identification
are in bold.

u1(t) and u2(t) were not correlated, meaning no co-

contraction. x1(t) and x2(t) were the responses of each sub-

system to the excitation signals. The noise corrupted output

was generated by

y(t) = x(t) + v(t),

where x(t) is the sum of the output of each sub-system. The

noise sequence v(t) accounts for: i) unmodeled dynamics,

ii) low-frequency physiological noise and iii) measurement

noise. The ratio between x(t) and v(t) was 10dB. Finally,

the transfer functions of the two sub-systems were

H1(s) = 250
26.75

s2 + 5.67s+ 26.75
, (1)

H2(s) = −1100
15.45

s2 + 5.96s+ 15.45
. (2)

These system chosen to have a dynamics similar to those

reported for EMG-torque relation.

B. Discrete-Time Models

The system identification methods examined were de-

signed for the estimation of discrete-time models. Therefore,

before starting the identification, the continuous-time transfer

functions were transformed to their discrete-time equivalents

via a bi-linear transformation [5].

C. Identification algorithms

The three methods used to estimate the MISO transfer

function models from the simulation data were:

1) Matlab PEM: The sub-systems were estimated si-

multaneously using a gradient descent algorithm that

minimized the prediction error as described in [9, chap.

10].

2) RIV individual: The sub-system between each input

and the total output was estimated sequentially using

the refined instrumental variable (RIV) method de-

scribed in [6, chap. 7].

3) RIV Back-Fit: First, an initial estimate of each input

contribution to the output was computed. Then, the

sub-system between each input and the output was

estimated sequentially after removing the predicted

responses to other inputs from the total output. This

procedure was repeated until convergence [5].

D. Simulation Results

One hundred Monte Carlo trials, each with new noise

sequences were simulated. Fig. 2 shows 30s segment of a

typical simulation trial.

Fig. 3 presents the frequency responses estimated for the

two systems by the three methods.

Fig. 3a-b show the estimates of H1(s) and H2(s) from

Matlab’s PEM algorithm. It is apparent that for some trials

the estimates were consistent with the simulated model while

for others the estimates were wrong. Fig. 3c-d shows the

estimates obtained using the RIV individual algorithm. The

estimates of H2(s) shown in Fig. 3d were quite accurate

(although there was some bias). In contrast, as Fig. 3c shows,

the estimates of H1(s) were not at all accurate, neither the dc

gain nor the filter’s break-frequency were estimated correctly.

Finally, Fig. 3e-f shows that the estimates obtained with

the RIV Back-Fit algorithm were always very accurate. The

small differences that can be observed are s small given the

presence of noise in both the input and the output.

III. EXPERIMENTAL STUDY

The subject lay supine in an experimental table with the

left foot attached to the pedal of a stiff servo-controlled

actuator by means of a custom made fiberglass boot. The leg

was fixed rigidly by means of straps. The subject provided a

written informed consent and the study was approved by the

university’s Research Ethics Board. The experiment lasted

for 180s.

A. Experimental Methods

1) EMGs: Bipolar EMGs were recorded from Tibialis An-

terior (TA), Soleus (SL), Gasctrocnemius Lateral (GL) and

Medial (GM) muscles using surface electrodes (DELSYS

DE-2.1) spaced 10 mm apart. The electrodes were attached
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Fig. 2. Results of a typical simulation trial. a and b) Input signals (s1(t)
and s2(t) in blue) and noise corrupted inputs (u1(t) and u2(t) in grey).
c) Output of H1(s) (x1(t)). d) Output of H2(s) (x2(t)). e) Simulated
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Fig. 3. Frequency response of the simulated systems (blue) along with
the results of the 100 Monte Carlo simulations using different identification
algorithms (grey). a and b) Systems estimated at the same time using Matlab
PEM algorithm. c and d) Systems estimated sequentially using the RIV
algorithm. e and f) Systems estimated using the RIV Back-Fit algorithm.

to the belly of each muscle after shaving and cleaning the

skin.

The electrode output were connected to differential pre-

amplifiers with a gain of 100, a common mode rejection of

100 dB, an input impedance of 300 MΩ and a frequency

response from 0 to 15 kHz. This pre-amplified output was

high-pass filtered (two-pole Butterworth, 10 Hz cutoff) and

sampled at 1 kHz by a 16-bit A/D converter. The digital

signal was full wave-rectified, low-pass filtered (eight-pole

Bessel, 45 Hz cutoff) and decimated at 100 Hz for further

processing.

2) Torque: Ankle torque was measured with a very stiff

torque transducer (5000 Nm/rad) that connected the actuator

pedal to the hydraulic motor. The torque signal was sampled

and decimated in the same way as the EMGs.

3) Paradigm: The maximum voluntary contraction

(MVC) both in plantarflexion and dorsiflexion was deter-

mined at the start of the experiment. The maximum contrac-

tion level that the subject was asked to generate was limited

to 30% of the MVC to avoid fatigue and to reduce crosstalk

between TA and SL [10].

The subject was provided with a display of a tracking

command and low-pass filtered ankle torque. The subject

was instructed to track the command signal by modulating

the activity of its ankle muscles; the command signal was

a Pseudo Random Binary Sequence (PRBS) which required

the subject to generate torques to dorsiflex and plantarflex the

ankle shown in Fig. 4a. Fig 4b shows the torque generated

by the subject. Fig 4e-c show the EMG activity of the TA,

GL and SL muscles. Each experimental trial lasted for 180s.

B. Experimental Results

1) Evaluation of EMG Crosstalk: Crosstalk was evalu-

ated by computing the cross-correlation coefficient between

different EMG signals at lags spanning ±0.5s [2]. The

computed correlation coefficient between GL and GM mus-

cles was large indicating either crosstalk or co-activation.

Consequently, GM was not considered for further analysis.

The correlation coefficient between the remaining muscles

was no larger than that observed for two random signals with

characteristics similar to the EMGs, indicating the absence

of crosstalk.

2) Model Identification: The RIV Back-Fit algorithm was

used to estimate dynamic EMG/Torque relation. The first

120s of the trial were used for model identification and the

remaining 60s for validation. Fig. 5 shows the frequency

response of the estimated parametric models relating the

EMG from TA, SL and GL to torque (this non-parametric

representation of the models was chosen to facilitate the

visualization of the results). In addition, Fig. 6 presents

the estimated torque using identification and validation data

along with each muscle contribution to the total torque.

There was strong agreement between the model predic-

tions and the measured data as evidenced by inspection

and by the Variance Accounted For (VAF) [7] between the

measured and predicted torques; this was greater than 97%
both for identification and validation data.

Neither of the other two methods described gave accurate

models when applied to these data. Identification and vali-

dation VAF were equal to 0% for Matlab’s PEM algorithm

while the RIV individual algorithm resulted in VAF of 63%
for identification and 60% for validation.

IV. DISCUSSION

This paper presents a methodology to estimate the con-

tributions from multiple muscles to the torque generated

around the ankle. This opens up new possibilities for the

characterization of muscle dynamics during functional tasks

that involve isometric contractions of agonist and antagonist

muscles.
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The simulation study showed that estimating the different

sub-systems of the MISO model in a single step, either

independently or simultaneously, gave biased results. This is

likely because when estimating each sub-system the effective

noise is not only the noise added to the output but the

contribution(s) from other sub-system(s). The RIV back-fit

algorithm deals with this by i) finding an initial estimate

of each input contribution, ii) removing the contribution

of other inputs when estimating each sub-systems and iii)

iterating between the different steps to refine the estimates.

The simulation study also showed that this strategy was valid

with multiplicative noise at the input and additive noise at

the output.

Application of this system identification method allowed

us to estimate the dynamic EMG/Torque relation when

several extensors (SL and GL) and a flexor (TA) mus-

cles generated torque measured at the ankle; the excellent

prediction ability demonstrated that the models were valid

and the estimates accurate. Our results also showed that

estimating each sub-system individually, without considering

−20

0

20

T
o
rq

u
e
 (

N
m

)

−20

0

20

T
o
rq

u
e
 (

N
m

)

0 20 40 60 80 100 120 140 160 180

−20

0

20

Time (s)

T
o
rq

u
e
 (

N
m

)

−20

0

20

T
o
rq

u
e
 (

N
m

)

 

 Measured 

Predicted

Predicted

a

b

c

d

Tibialis anterior

Gastrocnemius Lateral

Soleus

Fig. 6. a) Measured torque (blue line) along with the predicted torque
during the identification (red line) and validation (green line) stages. b, c
and d) Estimated contribution form TA, GL and SL muscles to the total
torque.

the influence of the other inputs gave models with very poor

prediction ability. The significance of these results is that

even though co-activation of agonist and antagonist muscles

can be reduced experimentally, by for example asking the

subject to perform only flexions or extensions of the joint,

the performance of the task will most likely involve the

activation of several muscles. Consequently, estimating the

sub-systems individually (or estimating only one sub-system

as is common practice) will result in incorrect estimates

due to the large levels of colored noise (i.e. the unmodeled

dynamics in addition to the measurement noise).

In addition, we confirmed that, as indicated in the literature

[1], [3], a second order linear system is an appropriate model

for the EMG/Torque relation during isometric contractions .

From the estimated frequency responses presented in Fig.

5, we found that the bandwidth of the model that represents

the dynamics of the TA muscle was larger than the other

muscles (0.9 Hz for TA versus 0.5 Hz for SL and 0.3 Hz for

GL). The gain curves for each muscle also show important

differences, indicating that the muscles have different prop-

erties. The differences are particular noticeable between the

flexor and extensor muscles. For example, the steady state

gain of extensors (GL and SL) was larger than that of the

flexor (TA). This might be due to the difference in strength

between the flexor and extensor muscles but given that the

EMG are measured in the skin it also might be related to the

attenuation of the EMG signals.

The information that can be extracted from the muscles’

frequency responses and/or transfer function may be poten-

tially useful in characterizing neuromuscular diseases.
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