Time-Varying Identification of Ankle Dynamic Joint Stiffness During
Movement with Constant Muscle Activation®

Diego L. Guarin', Student Member, IEEE, EMBS, and Robert E. Kearney', Fellow, IEEE.

Abstract— Dynamic joint stiffness defines the torque gen-
erated at the joint in response to position perturbations.
Dynamic stiffness is modulated by the angular position and the
muscle activation level, making it difficult to estimate during
large movements and/or time-varying muscle contractions. This
paper presents a new methodology for estimating dynamic
joint stiffness during movement and muscle activation. For
this, we formulate a novel, nonlinear, dynamic joint stiffness
model and present a new algorithm to estimate its parameters.
The algorithm assumes that the variability in the model
parameters is a function of the mean joint position. Using
this methodology we estimated the dynamic joint stiffness at
the ankle throughout ramp and hold displacements during a
constant muscle contraction. The estimated model accurately
predicted the intrinsic and reflex torques produced at the
ankle as a response to small position perturbations during
large displacement with muscle activation. Preliminary results
show that during muscle contraction, ankle intrinsic stiffness
estimated during movement is significantly lower than that
estimated during quasi-stationary experiments.

I. INTRODUCTION

Joint impedance, or its inverse dynamic joint stiffness,
characterizes the mechanical properties of the human joint
and defines the relationship between the angular position of
a joint and the torque generated around it [1]. A complete
understanding of joint stiffness and how it is modulated
during functional tasks would have important implications
in the study of neuromuscular control [1] and the design of
bio-inspired prosthesis [2].

Several approaches have been used to measure dynamic
joint stiffness [3]. Our laboratory has focused on using
system identification techniques to estimate it as the dynamic
relation between the joint angular position and torque [1].
Many of our studies focused on stationary situations, where
the operating point (mean joint position and activation level
of the muscles about the joint) remain constant through the
duration of the trials. This motivation behind this is that the
dynamic joint stiffness is heavily modulated by the mean
joint position and the muscle contraction level [4]. Therefore,
holding these two factors constant significantly simplifies the
estimation of the model parameters.

However, most functional tasks involve large, continuous
movements and time-varying muscle contractions; we hy-
pothesize that the results obtained during stationary experi-
ments are not valid on this situation and in consequence, new
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methods that permit the estimation of dynamic joint stiffness
during functional tasks are needed.

Some studies have characterized the joint stiffness dur-
ing non-stationary conditions [5]-[7]. However, they used
ensemble methods for parameter estimation, which required
hundreds of input-output trials each having the same time-
varying behavior. These conditions are difficult to achieve
experimentally. In addition, these ensemble methods did not
explicitly consider the modulation of joint dynamics stiffness
by mean joint position and muscle activation.

This paper introduces a methodology that can be used
to estimate dynamic joint stiffness during non-stationary
conditions. First, Section II presents a novel time-varying
model for dynamic joint stiffness, which not only accounts
for the torque generated by small position perturbations,
used to excite the system, but for the torque produced by
large position changes and time-varying muscle contraction.
A novel time-varying identification algorithm for this model
is then developed. Section III presents a simulation study
demonstrating that the new algorithm accurately estimates
the state/time-dependent model parameters. Section IV de-
scribes the application or our methodology to some rep-
resentative experimental data. Section V summarizes and
discusses these results.

II. MATERIALS AND METHODS
A. Dynamic Ankle Joint Stiffness Model

When the ankle undergoes a large movement, it’s passive
properties will generate a torque that varies with the joint
angle. If small perturbations are superimposed on the large
movements, the response of the ankle will be given by the
sum of the intrinsic response from the contractile apparatus,
the reflex mediated response, and the response from the
passive tissue. In addition, if the muscles about the joint
are voluntarily contracted, there will be an additional active
component. That is

Tr(t) =Tp (0m) + Ta (t) + T (91,; Tp,Th)
+Tr (0p; Tp,Ta), (H

where T is the total torque at the ankle, Tp is the passive
torque produced by changes in the mean ankle position
(6,), and T4 is the torque produced by active muscle
contractions. 77 and Ty are the incremental responses to the
small position perturbations (6,), produced by the intrinsic
and reflex mechanisms response and are modulated by Tp
and T4. During stationary experiments, the passive and
active components remain constant through the trial, greatly
simplifying (1).
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The incremental torque generated by the small position
perturbations can be modeled by two parallel pathways.
The first, whose input is joint position, represents intrinsic
dynamics and can be modeled by a second order system
composed by stiffness (K), viscosity (B) and inertia (I).
The second, whose input is joint velocity, represents stretch
reflex dynamics and is comprised of a series connection of
a delay, a differentiator, a static nonlinearity and a low-pass
system [1].

Fig. 1 shows this model with the intrinsic and reflex com-
ponents appearing as functions of mean joint position and
time instead of passive and active torque. The measurement
noise is v(¢) and a final noisy version of the total torque is
Tr(t).

The only signals available for direct measurement are the
mean joint position (6., (t)), the small position perturbations
(6,(t)), and the noisy total torque (I'r(t)). All the other
signals must be estimated.

1) Model re-parametrization: The model in Fig. 1 is
a complex, state/time-dependent, nonlinear model whose
parameters are difficult to estimate. We propose a new model
parametrization to simplify the identification. First, the static
nonlinearity in the reflex pathway is approximated as

ép(t_A):g(ép(t_A);em,t)

s
DR AN
s=0

where g(e;0,,,t) is the true static nonlinearity, I';(e) are
pre-defined basis function (e.g Tchebichev polynomials),
and 7,(0,,,t) are state/time-dependent weights. Second, the
state/time-dependent parameters are approximated as

D
t)~ > kalq (0m)
d=0

where k; and h; are constant weights. Finally, as there
is no simple way to estimate the muscles activation, the
sum of passive and active torques is approximated by the
time/position-dependent series given by

P
Z gl (0m) + > Bl (), (4)
p=1

where o, and 3, are constant weights.
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Fig. 1. Ankle dynamic joint stiffness model. The total torque is comprised

by the sum of intrinsic, reflex, passive and active components. The model
parameters depend on the joint meant position and the time.

B. Parameter Estimation

The identification algorithm is based on that of Kearney et.
at [1] but exploits the new parametrization. It is an iterative
algorithm that estimates the components of each pathway by
removing the contributions from the other pathways before
applying an identification procedure. It proceeds as follows:

1) Use 6,(t) to numerically calculate ,,(t t), f,(t), find
A from EMG signal, set T9(t) = T9,(t) = 0,

%V AF° = 0 and the counter A = 0.
2) Estimate the intrinsic torque as

Ti(t) = Tr(t) — (TA) + TPa(t).

3) Use 0,(t), O,(t), 6,(t), Tr(t) and the basis functions to
estimate the parameters of the intrinsic pathway using the
least squares algorithm. Use these parameter estimates to
compute the intrinsic torque 77 (®).

4) Estimate the passive and active torque as

Tpa(t) = Tr(t) — (T} () + Ta(t)).

5) Use Tpa(t), Om(t) and the basis functions to estiamte the
coefficients of (4) using the least squares algorithm Use
these estimated parameters to compute the passive and active
torque T A(1).

6) Estimate the reflex torque as

Tr(t) = Tr(t) — (T} (¢) + Tha(t)).

7) Use 0,(t — A) and Tr(t) to estimate the parameters of the
reflex pathway using the algorithm presented in [8]. Use the
estimated parameters to compute the reflex torque TR( ).

8) Compute the total torque as

Tp(t) = TP (8) + Ta(t) + TP a(t)

and calculate the variance accounted for (%VAF) between
the measured and predicted torques as

5 (Te(t) - T2()
5 (Tr(0)

9) If there is significant difference between %V AF> and
%VAF> 1 set A= X+ 1 and go to 2, else finish.

Some components of this algorithm haven been presented
and validated elsewhere [8].

RVAF* = |1 - x 100%

III. NUMERICAL VALIDATION

To validate our algorithm we simulated the model pre-
sented in Fig. 1 with a parameter set that provided an output
similar to that observed in experiments. The simulation was
performed in Matlab for 11s at 1kHz, signals were decimated
to 100 Hz for further analysis. Fig. 2A shows the input
signal, with the large position changes in red and the small
perturbations in blue. Fig. 2B shows the passive (magenta)
and the noise-free total (blue) torques. Panels C and D
present the simulated intrinsic and reflex torques. For this
simulation T4 (t) was set to zero. The additive noise was
non-white (low-pass filtered, 6Hz cut-off frequency) and the
ratio between the power of the noise and the sum of the
intrinsic and reflex components was 10 dB.

Fig. 3 shows with red lines snapshots of the true system
dynamics at three times. The first row gives the frequency
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Fig. 2. Typical simulation trial.
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response of the intrinsic dynamics at t=1s, t=4s and t=10s.
These times correspond to 0,,(1) = 0.2 rad, 6,,,(4) = 0.0
rad and 0,,(10) = —0.3 rad so they give a clear idea of
how the dynamics changed through the motion. The last two
rows present the elements of the reflex pathway; the middle
row shows the shape of the static nonlinearity while the last
row presents the frequency response of the reflex dynamics
which was time-invariant.

A. Numerical Results

One hundred Monte Carlo trials, each with a new noise
sequence were simulated. The blue traces in Fig. 3 are
the dynamics estimated in each of the simulation trials. It
is evident that the intrinsic and reflex components were
properly estimated; the results for all other times were
equally good. The %VAF between the simulated (noise free)
and predicted total torques varied between 99.6% - 99.8%.
Furthermore, the % VAF between the simulated and predicted
intrinsic and reflex torques varied between 98.8% - 99.9%,
and 98.3% - 99.2% respectively.

IV. EXPERIMENTAL VALIDATION

Next, the algorithm was applied to experimental data. The
experiment was performed on two healthy male subjects,
aged 27 and 30 who provided their informed consent. The
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Fig. 3. Simulated (red) and estimated (blue) parameters. First row shows the
intrinsis frequency response at certain time instants; last two rows present
the reflex static nonlinearity and frequency response.

experimental procedures were approved by the Institutional
Review Board. Subjects lay supine with the left foot attached
to the pedal of a stiff actuator by means of a custom made
fiberglass boot. Ankle position, torque and EMG signal from
the ankle muscles were recorded at 1 kHz and then decimated
to 100 Hz for further analysis. See [1] for further details.

Two types of movements were studied: quasi-stationary
movements, and continuous imposed movements. The ob-
jective was to study how the ankle’s mechanical properties
varied during movement and the effect of muscle activation
while avoiding the complexity of time-varying activation.

1) Quasi-Stationary Imposed Movements: The subject’s
ankle was moved to different discrete positions between 0.2
rad and -0.3 rad (negative position means plantarflexion).
During each trial, the mean position was held constant and
small perturbations (0.04 rad peak to peak) were applied
to the ankle. Each trial lasted for 30s and was performed
when subject was relaxed and while the subject contracted its
triceps surae (TS) to 10% of the Maximum Voluntary Con-
traction (MVC). This contraction level was selected because
it is expected that the reflex response will be enhanced [4].
To achieve this, the torque produced at MVC and the passive
torque at the desired ankle position were measured before-
hand. During the trial, the desired position was maintained
by the stiff actuator and the subject was asked to contract its
TS while a low-pass (0.7 Hz) version of the total minus the
passive torques was provided as feedback. In this way, the
subject could see only the voluntarily produced torque.

2) Continuous Imposed Movements: The subject’s ankle
was moved continuously between 0.2 rad and -0.3 rad while
small perturbations were applied. The experiment lasted 18s;
during the first 6s an initial position was held. Next, the ankle
was moved in a ramp with a speed of 5°/s for 6s. Then,
the ankle was held at the final position. The experiment was
performed during rest and activation of the TS to 10% MVC.

Fig. 4 shows typical trials during rest (left column) and
activation (right column). The top panels show the ankle
position, comprising by small perturbations (6, (t)) superim-
posed on large position changes (6,,(t)), the middle panels
show the measured torque (777 (t)); a considerable difference
in the torque levels between the initial and final positions
can be observed. Panels C and F show the rectified EMG
from the gastrocnemius (GM) as a representation of the TS
activity. The reflex mediated response (spikes) are clearly
much larger in the active case than at rest.

A. Experimental Results

The new algorithm was used to estimate the parameters
of the model for the quasi-stationary and the continuous
movement experiments. In the first case, the elements of
the expansions presented in (3) and (4) were limited to the
zero order (constant) element while in the second case, the
maximum order of the expansion was increased accordingly
to capture the variability in the parameters. As the muscles
contraction level was almost constant during each trial we
did not consider the parameter’s time dependency.
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Fig. 4. Data measured during a typical trial during rest (left column) and
activation (right column).

Fig. 5 presents the predicted torques for one subject for
rest (left column) and activation (right column) during the
ramp and hold experiment. The dotted vertical lines in all
the panels indicates the beginning of the movement. The top
panels shows that the measured (red) and predicted (blue)
torques are in good agreement; the %VAF between both
torques was close to 96% in all the trials. The magenta lines
show the predicted passive and active torque. The middle an
bottom panels show the predicted intrinsic and reflex torques
as a function of time; there is a significant modulation after
the beginning of the movement.

Fig. 6 presents the estimate of K (f,,) for the quasi-
stationary (red circles) and continuous (blue line) move-
ments, for both subjects during rest and activation. During
rest there was no significant difference between the two
movement types. In contrast, during activation the intrinsic
stiffness was up to 40 % lower during continuous movement
than that estimated during the quasi-stationary experiments.

V. DISCUSSION

This documents presents a new model of dynamic ankle
stiffness that is able to predict the response not only to small
position perturbations, necessary to excite the system, but to
large position changes which makes the parameters of the
model state-dependent. We also presented a new algorithm
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Fig. 5. Example of measured (red) and predicted (blue) torques during
rest (left column) and activation (right column).
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Fig. 6. Ankle intrinsic stiffness (K (6., )) estimated during quasi-stationary
(red dots) and continuous (blue lines) movement experiments during rest
(left column) and activation (right column) for two subjects.

that can identify the components of the model. In contrast
to previously used methods, our algorithm does not require
hundreds of input-output trials to estimate the state/time-
dependent parameters.

Our methodology allowed us to estimate the different para-
meters of the dynamic ankle stiffness during quasi-stationary
and continuous movement experiments. The result presented
in Fig. 6 are consistent with previous our knowledge of joint
stiffness: when there is activation, the stiffness increases
in proportion to the number of engaged cross-bridges [3]
and if there are large movements, some of the cross-bridges
will be forcibly detached thus reducing the stiffness. When
the movement is finalized and if the activation level is
maintained, the stiffness should return to its stationary value,
as is observed. When there is no activation, there are fewer
engaged cross-bridges so this phenomenon is less prominent.

These observations validate our hypothesis that results ob-
tained during stationary experiments cannot be extrapolated
to more functional situations.

The modulation of the remainder model parameters will
be analyzed in an extended version of this document.
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