
Identification of Dynamic Ankle Stiffness

during Time-Varying Conditions

Diego L. Guaŕın
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ABSTRACT

The neuromechanical properties of a joint can be described in terms of its dy-

namic stiffness that describes the dynamic relation between joint position and torque.

Dynamic stiffness is generated by intrinsic (mechanical) and reflex (neural) mecha-

nisms that act and change together; therefore, their individual contributions cannot

be measured directly. During stationary conditions, the neuromechanical proper-

ties of a joint can be estimated using nonlinear mathematical models, specialized

systems identification algorithms, and disturbance experiments. Stationary results

have shown that dynamic joint stiffness is heavily modulated by joint position and

voluntary torque. Consequently, during movement, when these undergo large, rapid

changes, dynamic joint stiffness will be time-varying.

This thesis develops new analytical tools to estimate time-varying, dynamic

joint stiffness during function. These methods were validated and their performance

characterized using realistic simulations. Pilot experiments demonstrated that the

methods accurately decompose the overall dynamic joint stiffness into its intrinsic

and reflex components, and track how they change throughout functionally relevant

activities. Therefore, these new methods make it possible for the first time to char-

acterize the neuromechanical properties of joints during functional activities. This

information is essential to understand how the central nervous system controls pos-

ture and movement and for the objective characterization of neuromuscular diseases.
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ABRÉGÉ

Les propriétés neuromécaniques d’une articulation peuvent être décrites en ter-

mes de sa rigidité dynamique qui décrit la relation dynamique entre la position de

l’articulation et le couple. La rigidité dynamique est générée par des mécanismes

intrinsèques (mécaniques) et réflexes (neuronaux) qui agissent et changent ensem-

ble; Par conséquent, leurs contributions individuelles ne peuvent pas être mesurées

directement. En conditions stationnaires, les propriétés neuromécaniques d’une ar-

ticulation peuvent être estimées à l’aide de modèles mathématiques non linéaires,

d’algorithmes d’identification de systèmes spécialisés et d’expériences de perturba-

tion. Les résultats stationnaires ont montré que la rigidité dynamique des articula-

tions est fortement modulée par la position des joints et le couple volontaire. Par

conséquent, lors du mouvement, lorsque ceux-ci subissent de grands changements

rapides, la rigidité articulaire dynamique va varier dans le temps.

Cette thèse développe de nouveaux outils analytiques pour estimer la rigidité ar-

ticulaire dynamique et variable dans le temps pendant la fonction. Ces méthodes ont

été validées et leurs performances ont été caractérisées par des simulations réalistes.

Des expériences pilotes ont démontré que les méthodes décomposent avec précision

la rigidité articulaire globale dynamique dans ses composantes intrinsèque et réflexe

et suivent comment elles évoluent tout au long des activités fonctionnellement per-

tinentes. Par conséquent, ces nouvelles méthodes permettent pour la première fois

de caractériser les propriétés neuromécaniques des articulations au cours des ac-

tivités fonctionnelles. Cette information est essentielle pour comprendre comment
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le système nerveux central contrôle la posture et le mouvement et pour la car-

actérisation objective des maladies neuromusculaires.
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ORIGINAL CONTRIBUTIONS

This thesis develops and validates new algorithms for the identification of linear,

and non-linear, time-varying systems. The are applied to estimate the neuromechan-

ical properties of joints during function. These methods and algorithms represent

a significant contribution to the modeling and identification of biomedical systems

allowing us to track the large, rapid changes commonly seen in the dynamics of these

systems using a few, short input-output segments. The original contributions to the

research and scientific knowledge are the following:

Parametric identification of linear, time-varying systems:

1. I developed and validated a novel algorithms for the identification of time-

varying, Box-Jenkins models, which are useful to model biomedical sys-

tems because of their ability to accurately described the system dynamics

even in the presence of complex, non-white, physiological noise. The ma-

jor contribution of the new algorithm is that it can accurately track large,

rapid, periodic parameter changes using a few, short input-output trials.

Previous methods for identification of time-varying, Box-Jenkins models

could only be used when the system parameters varied slowly with time.

This algorithm represents an important contribution to the modeling and

identification of biomedical systems since: i) time-varying, Box-Jenkins

model structure is useful to model many biological system, ii) it can track

the rapid changes frequently seen in biological systems, and iii) has only

moderate data requirements simplifying experimental needs.
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Non-parametric identification of linear, time-varying systems:

2. I developed and validated novel algorithms for identification of time-

varying, non-parametric models using periodic, input-output data seg-

ments of short duration. Non-parametric models are useful to describe

systems whose model structure is unknown and therefore commonly used

to model biomedical systems. The new algorithm accurately estimates the

time-varying parameters using just a few input-output realizations. This

represents a great improvement over previous methods for identification

of non-parametric, linear models that require hundreds of input-output

realizations presenting the same time behavior. The reduction in data

requirement results in much shorter experiments which makes it much

easier to acquire enough trials with the same time-varying behavior.

Identification of time-varying, Hammerstein systems:

3. I developed a novel algorithms for the identification of time-varying, Ham-

merstein systems, consisting of the series connection of a time-varying

static-nonlinearity and time-varying, Box-Jenkins model. Hammerstein

systems are useful in describing biomedical systems as they combine the

simplicity of linear systems with the generalization capacity of nonlinear

models. The new algorithm improves on existing methods because: i) it

does not require the inversion of the static-nonlinearity, ii) is guaranteed

to converge to the true values under general conditions, and iii) it can pro-

vide accurate estimates of the time-varying model parameters from one

single input-output realization.

ix



Identification of time-varying, parallel-cascade systems:

4. I introduced a new method for the identification of the time-varying,

parallel-cascade model of joint dynamic stiffness able to decompose the

torque at the joint into its intrinsic and reflex components. The new algo-

rithm improves on existing methods because: i) it accurately estimates the

time-varying intrinsic and reflex stiffness models using just a few input-

output realizations, ii) it does not make a priori assumptions about the

linear dynamics and the shape of the static-nonlinearity, and iii) it does

not assume that the model parameters remain over short time-windows,

rather it estimates the model parameters at each point in time, and iv) it

produces unbiased parameter estimates in the presence of complex, non-

white, physiological noise. Using this algorithm I showed that both in-

trinsic and reflex dynamic stiffness present large, fast changes throughout

the a simulated gait cycle, demonstrating that the joint neuromechan-

ical properties during function cannot be appropriately described using

time-invariant models, and that the results obtained from constant pos-

ture experiments cannot be interpolated to described the joint properties

during movement.
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CHAPTER 1
Introduction

Human joints serve as the interface between the body and the physical world.

The mechanical properties of the joints must be constantly adapted or modulated to

allow for natural interaction with the environment. For example, when handling a

manual drill, the shoulder, elbow, wrist and digits must become stiff to secure the tool

in place and facilitate its handling; this can be achieved by activation of surrounding

musculature and/or by selecting a posture that provides higher joint stiffness and

limb stability. Conversely, when interacting with delicate or soft objects, the joints

must be compliant to prevent damage; this is commonly achieved by reducing the

activation of related muscles. These activities are performed without much thought

and for trained subjects these adaptations become natural parts of their behavior.

These changes in the mechanical properties of the joints occur constantly during

function to guarantee a natural interaction with the environment.

The complex tasks that the central, peripheral and neuromuscular systems per-

form to achieve these adaptations are not completely understood. Consequently,

there is not yet a clear understanding of how the neuromechanical properties of

joints are modulated during function and what mechanisms drive these modulations.

Some of these mechanisms are voluntary, e.g. boosting the activation of certain mus-

cles, adopting a new posture [11]. Others are involuntary, e.g. rapid increases in joint

torque via spinal reflexes [12]. And still others results from intrinsic joint properties,
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e.g. the modulation of skeletal muscle force with length and velocity [6]. A better

understanding of how healthy humans interact with the environment and how the

neuromechanical properties of joints are modulated to facilitate this interaction will

have important implication in different research areas such as:

Motor control: Understanding of how the neuromechanical properties of joints

are modulated during movement is essential to elucidate the mechanisms and

strategies used by the central nervous system (CNS) to control posture and

movement. Some theories of motor control suggest that the CNS controls move-

ment and posture by modulating the neuromechanical properties of joints, so

that the modulation of the joint dynamic stiffness should precede the move-

ment [13, 14]. Others suggest that the CNS has an internal model of the limbs

dynamics and can predict the forces required to generate movement under dif-

ferent conditions, so that the modulation of the dynamic joint stiffness is a

consequence of the movement [15, 16]. Measurements of the modulation of

neuromechanical joint properties during function are needed to provide the ev-

idence required to test different hypothesis regarding the mechanisms used by

the CNS to control movement and posture. For example, determining if the

changes in intrinsic and reflex stiffness associated with a movement precede of

succeed the movement will provide new evidence to support the equilibrium

point or internal model hypotheses.

Neuromuscular disease: Many neuromuscular disorders cause changes in the joint

properties, which are currently assessed in terms of the clinicians’ subjective

impression of the resistance offered by the joint during passive manipulations.
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Measures of the intrinsic and reflexively mediated properties of joints will pro-

vide objective information of these neuromuscular diseases, and provide tools

for the quantitative assessment of joint neuromechanical properties throughout

the course of a disease or treatment [17].

Rehabilitation engineering: The informed design of prosthesis and orthosis re-

quires a quantitative understanding of the neuromechanical joint properties. A

complete characterization of joint mechanics during function will permit the

development of biomimetic devices that will be easier to control by human

operators as they behave and interact with the environment as real joints [18]

Robotics: Studies of joint mechanics will inform the development of biomimetic

robots that can interact with humans and the environment in more natural

ways. These new robots use adjustable compliant actuators that minimize large

forces due to shocks, safely interact with the user, and store/release energy in

passive elastic elements [19].

The neuromechanical properties of a joint can be described in terms of dynamic

joint stiffness, it defines the relation between joint position and the torque acting

about it [1]. Its inverse, joint compliance, defines the relation between joint torque

and the resulting position changes [20]. Dynamic joint stiffness may be decomposed

into two components:

• An intrinsic component arising from the limb’s inertia, and the visco-elastic

properties of the joint surface, connective tissue, and muscle.
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• A reflex component arising from changes in muscle activation resulting from

stretch reflex mechanisms.

These two components act and change together, and in practice it is not possible

to measure the effects of the intrinsic or reflex mechanisms separately.

There are several methods to estimate the intrinsic and reflex components of

dynamic joint stiffness. Some techniques involve the suppression of spinal reflexes

using either cuffing, neural blockage or surgery. These methods involve performing

two experimental trials, before and after neural blockade, and comparing the results

to differentiate between the intrinsic and reflex components of dynamic joint stiffness.

However, even if both experimental trials can be done under the same conditions,

e.g, same muscle length, velocity, force; it is difficult to validate how the intrinsic

joint properties are affected by this process. Therefore, comparing values before and

after suppression of spinal reflexes might over- or under- estimate the role of the

neural mechanisms.

An alternative, non-invasive, analytical approach, is to use mathematical mod-

els and system identification techniques analytically separate the intrinsic and reflex

components of dynamic joint stiffness from one single trial. This analytical approach

will be employed in this thesis for the estimation of dynamic joint stiffness during

functional situations. During stationary experiments, dynamic joint stiffness can be

modeled by a parallel-cascade structure composed of intrinsic and reflex components.

In this structure, dynamic intrinsic stiffness is described by a linear system relating
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joint position and intrinsic torque. Reflex dynamic stiffness is described by a Ham-

merstein system, which consist of a series connection of a static-nonlinearity and a

linear system that relates joint velocity and reflex torque [12].

There are some major challenges in the quantification of dynamic joint stiffness

from experimental data. First, the torque produced by the intrinsic and reflex mech-

anisms cannot be measured separately; only the noisy version of the total torque,

which is the sum of intrinsic, reflex and voluntary contributions can be measured.

Second, intrinsic and reflex mechanisms are heavily modulated by joint position,

torque, functional task and a variety of other factors. Moreover, the properties of

the intrinsic and reflex systems are modulated together during function and the com-

plex, nonlinear interactions between these mechanisms make it difficult to dissociate

their individual contributions. Finally, the output noise has complex amplitude and

temporal structures; consequently, the system identification techniques used to char-

acterize dynamic joint stiffness must be able to: decompose the total torque into its

different components; track the large, rapid changes in the system dynamics expected

during function; and must be robust to the presence of non-white, additive noise.

The general objective of this thesis was to develop and validate novel analytical

and experimental methods to measure the neuromechanical properties of human

joints and how they are modulated during function. This thesis focuses on the

study of the ankle joint, because of its significant role during human locomotion and

balance. Nevertheless, the methods described here can be applied to study other

joints.
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The developments presented in this thesis are based on the following specific

objectives (SO):

SO 1: Develop and validate parametric system identification methods for the unbi-

ased estimation of time-varying, linear systems.

SO 2: Develop and validate system identification methods for the unbiased estima-

tion of time-varying, nonlinear, Hammerstein systems.

SO 3: Develop and validate system identification methods for the unbiased estima-

tion of the time-varying, parallel-cascade, dynamic ankle stiffness model.

1.1 Thesis Outline

This thesis comprises four scholarly articles, one accepted by an international

journal, one submitted to an international journal, one published in the proceed-

ings of an international conference and one that will be submitted shortly to an

international journal.

Chapter 2 describes the concept of dynamic joint stiffness, its different compo-

nents and mechanism. It also presents a critical review of the literature on exper-

imental and analytical methods used to estimate dynamic joint stiffness. Next, it

discusses the analytical methods that involve system identification techniques for the

estimation of dynamic joint stiffness, with an emphasis on the parallel-cascade model

structure and related algorithms. It then summarizes the current state of knowledge

of dynamic joint stiffness obtained with these methods. Finally, the rationale for the

thesis is presented.
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Chapter 3 presents a short summary describing the different methods for the

identification of linear, Hammerstein, and time-varying systems that are the basis of

the novel algorithms developed in this thesis.

The parallel-cascade model of dynamic joint stiffness describes the overall joint

stiffness as a parallel combination of a linear system, representing the intrinsic

mechanisms, and a Hammerstein system, formed as a series connection of a static-

nonlinearity and a linear system, representing the reflex mechanisms. Therefore, the

unbiased identification of linear systems is an important aspect in the characteriza-

tion of joint biomechanics. There are several well-known methods for the identifi-

cation of linear, time-invariant systems that provide unbiased parameter estimates

even in the presence of non-white, additive noise. However, the identification of lin-

ear, time-varying systems is a research field in development, and available methods

for the estimation of linear, time-varying systems from input-output data cannot

accurately track the parameters time-course or require very large data records for its

estimation, which severely limits their applicability.

Chapter 4 develops a novel algorithm for the identification of linear, time-

varying, transfer function models in the presence of non-white, additive noise. This

model structure is commonly known as Box-Jenkins model and is characterized by

an independent parametrization of the system and noise dynamics. Simulations are

used to demonstrate the time-varying, Box-Jenkins structure can describe the intrin-

sic joint compliance, and that the new algorithm can accurately tracks the changes

in intrinsic joint compliance expected during walking. This chapter was published

in IEEE Transactions on Neural System and Rehabilitation Engineering, authored
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by D. L. Guarin and R. E. Kearney, entitled ”Identification of a Time-Varying, Box-

Jenkins Model of Intrinsic Joint Compliance” in October, 2016.

One limitation of the transfer function models is that the model order needs to

be defined a priori, and the usefulness of the results depends on the validity of the

selected model order. An alternative approach is to describe the system’s dynamics

by means of a non-parametric model, which do not require the definition of a model

order. However, non-parametric models usually have more free parameters than

transfer function models, so that when the model order is known, a transfer function

model provides a more parsimonious representation of the system’s dynamics.

Chapter 5 develops a novel algorithm for the identification of, linear, time-

varying, non-parametric models. The new methodology that can track the param-

eters’ time-course using only a few segments of periodic, input-output data records

of short duration. This chapter was submitted to IEEE Transactions on Neural Sys-

tem and Rehabilitation Engineering, authored by D. L. Guarin and R. E. Kearney,

entitled ”Identification of Time Varying, Intrinsic, Dynamic Ankle Stiffness during

Passive, Imposed Walking Movements” in August, 2016.

One of the main complexities in the estimation of dynamic joint stiffness is

due to the nonlinear, Hammerstein structure used to represent the stretch reflex

mechanism. The estimation of time-invariant, Hammerstein systems is a mature

subject and many different techniques for the identification of the model parameters

are available. However, to our knowledge there are no publicly available algorithms

for the estimation of time-varying, Hammerstein systems. Chapter 6 develops a

method for the identification of time-varying, Hammerstein system, composed by
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a series combination of a time-varying, static-nonlinearity and Box-Jenkins model.

This chapter was published in the proceedings of the 17th IFAC System Identification

Symposium, authored by D. L. Guarin and R. E. Kearney, entitled ”An Instrumental

Variable Approach for the Identification of Time-Varying, Hammerstein Systems” in

October, 2015.

Chapter 7 develops a new methodology for the identification of overall joint dy-

namic stiffness during time-varying conditions. Joint dynamic stiffness is modeled

by a parallel-cascade structure composed of intrinsic and reflex pathways. The algo-

rithms developed in previous chapters are used to estimate the intrinsic and reflex

components of the dynamic joint stiffness sequentially, iterations are used to refine

the parameters estimates. This method is applied to measure the intrinsic and re-

flex dynamic stiffness from one subject in an imposed walking movement experiment

with constant muscle activation. The identified TV models predicted the measured

torque very well, accounting for more than 95% of the measured torque variance.

This chapter was submitted to Frontiers in Computational Neuroscience, authored

by D. L. Guarin and R. E. Kearney, entitled ”Estimation of Time-Varying, Intrinsic

and Reflex Dynamic Ankle Stiffness during Movement” in January, 2017.

Chapter 8 summarizes the original contributions of this thesis and provides a

general discussion and suggestions for future developments, applications and im-

provements.

Finally, Appendix A presents a short summary of the background material in

anatomy and physiology required to clearly understand the subject.
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CHAPTER 2
Literature Review

This chapter describes dynamic joint stiffness, its different components and un-

derlying mechanisms. It then presents a critical review of the literature on exper-

imental and analytical methods used to estimate dynamic joint stiffness. Next, it

reviews system identification techniques for the estimation of dynamic joint stiffness,

with an emphasis on the parallel-cascade model structure and related algorithms. It

then summarizes the current state of knowledge of dynamic joint stiffness obtained

with these methods. The chapter ends with the rationale for the thesis.

2.1 Dynamic Joint Stiffness

2.1.1 Definition

Dynamic joint stiffness is defined as the dynamic relation between the angular

position of a joint and the torques acting about it [1]. It defines the interactions

between a joint, the associated limbs, and the external environment. Measuring dy-

namic joint stiffness has important implications in a variety of research areas, includ-

ing basic motor control research, neuromuscular diseases, rehabilitation engineering,

and robotics.

Dynamic joint stiffness is usually described using a lumped model relating joint

position and torque rather than considering the detailed mechanisms that compose

it. However, having a clear idea of the mechanisms that underlie joint dynamics
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is fundamental to the interpretation of results. This section briefly reviews these

mechanisms.

Figure 2–1 shows an information flow diagram for the dynamics of a single joint.

Here torque is considered as the input and position as the output, so that this model

represents dynamic joint compliance; the inverse formulation, in which position is

regarded as the input and torque is the output is known as dynamic joint stiffness.

Overall joint dynamics are generated by three mechanisms: passive, intrinsic, and

reflex dynamics. Each mechanisms is composed of different subsystems that will be

described next.

Passive dynamics

It consist of two parts: limb dynamics and articular dynamics.

Limb dynamics: can be attributed to inertia if assumed that the limb is rigid and

the joint rotates about a single, fixed axis. In this case, limb dynamics is a

consequence of Newton’s second law and can be defined as the relation between

the second derivative of the joint angular position and the torque acting about

it. More complex formulations, that consider the movements in different planes,

are required for movements other than pure single axis rotations [21, 22].

Articular dynamics: encompasses the viscoelastic properties of the joint surface,

ligaments, and connective tissue. Torques produced by these mechanisms are

likely small in the middle of the range of motion and become significant as the

joint approaches the limits of its range of motion [23, 24].
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Figure 2–1: Information flow diagram of the peripheral neuromuscular system.
Adapted from [1].

Intrinsic dynamics

It is represented by muscle mechanics in Figure 2–1. It arises from intrinsic

properties of active muscle and consist of two components: contractile mechanics

and activation dynamics.

Contractile Mechanics: determines the forces produced by the muscle in response

to changes in length when the level of activation remains constant. These forces

are a nonlinear function of the level of activation, the displacement amplitude,

direction, velocity and several other factors [25].
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Activation Dynamics: determines the forces produced by the muscle as a result

of voluntary or reflex changes in the level of activation. Activation dynamics

are complex because activation level changes results in changes in the number

of active motor units (recruitment) and/or the firing rate of active motor units

(rate coding). Activation dynamics have been measured indirectly in terms of

the relation between the average electrical activity of the whole muscle (EMG

signal) and the torque produced at the joint, this relation changes as a function

of muscle length and the type of contraction [26].

Interactions: under physiological conditions muscle length and activation level of-

ten change together, and so interactions between the contractile mechanics and

the activation dynamics will occur. However, the nature of these interactions

is not fully understood. It has been suggested that contractile mechanics and

activation dynamics can be treated as independent processes for small pertur-

bations about an operating point, defined by the joint position and muscle

activation level [1, 27]. However, this assumption is not valid in more general

conditions involving large changes in joint position and/or activation level.

Contractile mechanics change drastically with the level of activation, and it is

likely that activation dynamics will change as a function of muscle length.

Reflex dynamics

Propioreceptive receptors are the source of reflex muscle activation most likely

to influence joint dynamics. Muscle spindle receptors respond to changes in joint

position (and its derivatives), and their dynamic response is under central control
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via the gamma system. They have direct reflex connection to the muscles controlling

the joint. Other reflex pathways might have an important role in determining the

effect of reflexes in joint dynamics, in particular golgi tendon organs are very sensitive

to muscle force. They have autogenetic, inhibitory connections to the motor neuron

pool and may play and important role in determining the effects of reflexes in joint

dynamics

Relation between muscle force and torque

The relation between muscle force and joint torque is determined by the muscles’

lines of action and their moment arms. Several biomechanical models that predict

joint torque from individual muscle forces have been described and validated [28,

29, 30]. However, the inverse problem, determining the force in the muscles about

a joint from torque measurements is more difficult because generally there are more

muscles than equations describing the joint motion, resulting in an overdetermined

system of equations with infinite number of solutions [7]. Methods that rely on

EMG recordings, muscle geometry, and/or the optimization of certain criterion to

predict individual muscle forces have been used [31, 32, 33, 34]. However, is difficult

to validate such prediction experimentally because measuring the individual muscle

force in humans is challenging.

Relation between joint position and muscle length

Physiological studies of muscle and propioreceptor dynamics are often performed

in terms of muscle length rather than joint position. Therefore, the transformation

from muscle length to joint position must be known to understand the functional

implication of these results. However, changes in overall muscle length arise from
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the deformation of both muscle and tendons, which are connected in series, and

their individual deformation is determined by their relative stiffness. Tendon has

a nonlinear stress-stain relation and the mechanical properties of the muscle are

complex [1]. Consequently, it is difficult to estimate the change in muscle length

associated with a change in joint position.

Thus, joint dynamics arise from the interaction of different subsystems operating

in a nested feedback structure and modulated by different factors. It is difficult

to determine the characteristics of each subsystem independently because it is not

possible to directly measure and manipulate their individual inputs and outputs.

Joint position and torque are the only signals that can be readily measured and

manipulated. Therefore, measuring dynamic joint stiffness can be seen as a classical

system identification problem, where the system dynamics are estimated though

the analysis of the relation between the input (position or torque) and the output

(torque or position) records. However, accurate description of joint neuromechanical

properties requires the decomposition of the overall joint dynamic stiffness in its

components: passive, intrinsic and reflex dynamics. The methods commonly used

for this task are discussed next.

2.2 Decomposition of Intrinsic and Reflex Mechanisms

One of the most challenging aspects of measuring dynamic joint stiffness is that

the intrinsic and reflex components act and change together, so that is not possible to

measure their mechanical consequences individually under normal conditions. More-

over, intrinsic and reflex components have different underlying mechanisms, intrinsic

stiffness arises from the limb’s inertia and the visco-elastic properties of the joint
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surface, connective tissue and muscle; reflex stiffness is generated by stretch reflex

mechanisms. Consequently, study each component individually, and understanding

their roles during function, is fundamental to determine how the central nervous

systems controls movement and posture. Furthermore, measuring the individual

contributions of the intrinsic and reflex mechanisms to the overall joint dynamics

might provide new means to characterize and diagnose neuromuscular diseases. For

example, spastic patients have an altered reflex response to stimuli but their intrinsic

response are not significantly different from normal subjects [17]; in contrast, in small

children with cerebral palsy only the intrinsic component of joint dynamic stiffness

was altered with respect to healthy, aged matched subjects [35].

Multiple experimental and analytical methods have been proposed to decompose

the intrinsic and reflex mechanisms of dynamic joint stiffness. Among those, the most

commonly used are: de-afferentation, reflex EMG and analytical methods. These are

discussed in detail next.

2.2.1 De-afferentation methods

One approach to evaluate the contributions of intrinsic and reflex mechanisms to

dynamic joint stiffness is to compare the mechanical responses to disturbances before

and after eliminating reflexes. Differences between the responses are attributed to

reflex contributions. De-afferentation techniques include removing the neural feed-

back using surgery [36, 37], or nerve block [38, 39, 40]. The reflex response has

also been blocked by inducing ischemia using a pneumatic cuff fitted around the

limb [41, 42, 43], or by applying high-frequency (ą 50Hz) vibrations to the ten-

don [44, 45].
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A major concern with all de-afferentation techniques is that the operating point

must be matched carefully before and after removing the reflex response to ensure

that intrinsic mechanisms do not change. However, it is very difficult to match muscle

activation levels between the two trials, as the stretch reflex plays an important part

in voluntary activation of muscle [46]. Furthermore, it is not possible to ensure that

only the stretch reflex mechanisms will be affected by the de-afferentation procedure.

Likely, the motor control of the muscle is also affected [47].

Some groups have applied electrical stimulation to muscles in human subjects to

activate the muscle and suppress reflex-mediated responses at the same time [48, 49,

50]. This technique encounters some problems. First, it cannot completely suppress

the reflex response. Secondly, it can be painful and elicit spasm and co-contraction.

Thirdly, the order of recruitment during electrical stimulation is different than that

during normal voluntary contractions, so that different motor units will be active at

the same level of force during voluntary and electrical activation [51]. Consequently,

intrinsic mechanisms might differ and the contribution of reflex mechanisms to overall

joint stiffness may be over- or under- estimated.

2.2.2 EMG methods

Stretch reflex activity has been studied often using EMG as the output mea-

sure [52, 53, 54, 55]. Kearney and Hunter identified the dynamic relation between

velocity and reflex EMG in the triceps surae and tibialis anterior [56, 57]. They

showed that the reflex gain was dependent on torque level and ankle position. Oth-

ers have tried to characterize the mechanical properties of the joint using EMG

signals. For example, Gottlieb and Agarwal defined the reflex compliance as the
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ratio of the reflex EMG to velocity, and found that it increased linearly with level

of voluntary contraction [58]. Stein and Kearney found similar results for the reflex

EMG; however, the reflex gain increased less than linear with the level of voluntary

contraction [59].

Although EMG studies have provided important information about reflex be-

havior, they do not necessarily reflect joint dynamics: the relation between EMG and

joint torque is not fully understood, and therefore EMG signals cannot be used quan-

tify the mechanical contribution of the stretch reflex mechanisms. Models relating

EMG and torque have been proposed for isometric or isotonic conditions [60, 61, 26].

However, they cannot describe the EMG-force relation under general conditions.

Furthermore, EMG is influenced by reflex response and other factors, such as vol-

untary activity [54], so that it is difficult to estimate the mechanical contribution of

reflex activity using EMG only.

2.2.3 Analytical methods

A number of analytical methods involving random disturbances and system

identification techniques have been developed to estimate the intrinsic and reflex

mechanisms of dynamic joint stiffness. Kearney et.al. took advantage of the stretch

reflex delay to separate the intrinsic and reflex stiffness from measurements of joint

position and torque. In this method, a non-parametric, impulse response function

(IRF) with a maximum memory of 40ms is estimated between joint position and

torque using a correlation-based identification approach. Since there is no reflex

response prior to 40ms from the onset of the perturbation, the model described only

the intrinsic mechanisms. The position is then convolved with the identified IRF
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to estimate the intrinsic torque. Reflex torque is then estimated by subtracting the

intrinsic from the measured torque. Reflex stiffness is then found by estimating an

IRF between half-wave rectified velocity and reflex torque, and this model is used to

update the reflex torque. This process is repeated iteratively until further iterations

fail to reduce the prediction error [12]. Despite its utility, this iterative approach may

not converge to the true values and cannot be used with data acquired in closed-

loop [62, 63].

Recently, I introduced a modification of this algorithm that used an a priori

parametric model of intrinsic and reflex stiffness. The algorithm iteratively estimates

the intrinsic and reflex components of dynamic joint stiffness using an instrumental

variable approach [64, 65]. This method does not suffer from the convergence issues

of the non-parametric approach and can be directly applied to data measured in

closed-loop.

Zhao et.al., considered an a priori parametric model of intrinsic and reflex stiff-

ness and developed a non-iterative subspace approach for parameter estimation [63].

The main issue with this approach was that the second-order model used to describe

the intrinsic stiffness could not capture the complex system dynamics. Jalaleddini

et.al. extended the subspace approach to model the intrinsic stiffness with a non-

parametric, IRF, successfully capturing the system dynamics [62]. The non-iterative

approaches assume that the response of the intrinsic and reflex mechanism are in-

dependent; however, these mechanism might show complex, nonlinear interactions

during function.
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Zhang and Rymer modeled the joint stiffness as non-linear delay differential

equation. They solved the differential equation using numerical integration. After

performing the integration they carried out least-squares linear regression to estimate

the parameter values. They compared the predictive capacity of their model to that

of a simple second-order model that did not account for reflex responses and noted

only a slight improvement. This result indicates that either their model was not

correct or that reflex responses were too weak to be detected in their particular

experimental conditions. [66].

Van der Helm et.al., described a linear, closed-loop model to describe the in-

trinsic and reflex components of the human arm during postural control. The model

parameters were estimated using a frequency domain technique that provided un-

biased estimates for data acquired in closed-loop [47]. However, this technique is only

valid for linear systems and therefore cannot be used when as the reflex response is

nonlinear, as in the case of the ankle [59].

This thesis, develops and validates analytical methods to estimate the intrinsic

and reflex components of joint dynamic stiffness. The approach has several advan-

tages, including that is non-invasive, can decompose the intrinsic and reflex torques

from its noisy measurement of joint position and torque, and does not use of EMG

signals to quantify the mechanical consequences of the reflex mechanism.

2.3 Estimation of Dynamic Joint Stiffness

Before describing the analytical techniques used to estimate dynamic joint stiff-

ness, it is important to clarify the different concepts and terminologies that are used

in the literature.
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Dynamic joint stiffness: refers to the dynamic relation between joint position and

torque [12]; it includes: passive dynamics, intrinsic dynamics and reflex dynam-

ics. The term joint impedance is often used as a synonym [67, 68, 69].

Joint compliance: Refers to the dynamic relation between joint torque and posi-

tion, it is the inverse of dynamic stiffness [70], and sometimes is called joint

admittance [71, 72].

Joint static stiffness: refers to the steady-state or DC component of intrinsic joint

stiffness. It describes only the elastic properties of the joint, muscle and con-

nective tissue, without characterizing the dynamic behavior of the joint [73].

Joint quasi-stiffness: is the instantaneous relation between joint position and torque

when the joint position is changing significantly [73, 74]. Quasi-stiffness and

static stiffness are equivalent during static conditions when there is no signif-

icant changes in joint position [75]. However, under TV conditions, when the

joint is moving, they differ greatly as the joint quasi-stiffness is influenced by

the joint biomechanical properties, movement speed, acceleration, and jerk [73].

A complete characterization of the neuromechanical properties of a joint requires

the description of the static and dynamic properties of this neuromuscular systems.

Consequently, this thesis focus of the developments of methods to describe dynamic

joint stiffness and compliance. This rest of this section provides a critical review on

the methods that have been used to estimate dynamic joint stiffness in a variety of

tasks and comments on their strengths and weaknesses.
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2.3.1 Dynamic stiffness

Quasi-stationary methods

Linear techniques have been used to characterize dynamic joint stiffness, under

the assumption that stiffness dynamics are linear and time-invariant under stationary

conditions.

Brown et al. [76] applied sinusoidal position inputs and used Nyquist analyses to

study thumb stiffness. They calculated the viscosity and elasticity at each frequency

and plotted viscosity versus elasticity as a Nyquist diagram of angular stiffness. This

diagram was a function of frequency where the vector sum of the elastic and viscous

components was the intrinsic dynamic stiffness. Similar techniques were applied at

the elbow [77], and ankle [78]. One problem with this technique is that Fourier

analyses is used to extract the components of the output at the same frequency as

the input and all other components are discarded. However, joint dynamic stiffness

is nonlinear, so that the output will have significant power in frequencies different

from those of the input, and by ignoring the additional frequencies is possible to

obtain only a linear approximation of a non-linear model [59].

Another analytical approach uses the amplitude and phase of the response to

sinusoidal input to estimate the frequency response [70, 79]. The gain is the ratio of

output to input amplitude and the phase is the difference between the output and

input phases. One disadvantage of this approach is that the experiment must be

repeated at many different frequencies. Thus, experiments will be lengthy. Further-

more, sinusoidal stimuli are predictable and so subjects may generate an undesirable,
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periodic, voluntary response at the same frequency of the stimulus. Additionally, this

technique is best suited for linear systems.

The use of stochastic stimuli can overcome the disadvantages of sinusoidal stim-

uli since stochastic signals can have power over a wide range of frequencies, which

evoke an output response with the full range of frequencies required to characterize

joint dynamics in a single experimental trial. In addition, stochastic perturbations

cannot be predicted by the subject, so the voluntary contributions to the output will

be reduced.

Broad-band, random, position perturbations have been used as input to char-

acterize the intrinsic component of joint dynamic stiffness [23, 52, 80, 81]. How-

ever, high-frequency position vibrations inhibit stretch reflexes because of their high

mean velocities [1], so that this type of position perturbations cannot be used

to estimate the reflex component of dynamic joint stiffness. On the other hand,

broad-band, random, torque perturbations have been used to characterize the intrin-

sic [1, 22, 69, 82, 83], and reflex [47, 84, 85, 86] components of ankle, forearm, and

elbow compliance. However, these methods wrongly assume that the reflex compo-

nent of joint compliance is linear.

Some studies have used a priori, parametric, nonlinear models to describe reflex

stiffness. By using nonlinear optimization to estimate the model parameters [87, 88,

89]. However, the usefulness of the parameter estimates depends on the validity of

the selected model, if the model is incorrect then its parameters will have no physical

meaning [90].
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Kearney et.al., developed nonlinear, non-parametric techniques to estimate the

intrinsic and reflex components of joint dynamic stiffness. These methods use pseudo-

random, binary sequence (PRBS) as input perturbations; as these signals do not

inhibit the stretch reflex response because of their low mean velocity. They also de-

veloped a non-parametric, parallel-cascade model structure that models the intrinsic

and reflex mechanical responses to small, random position perturbations by a par-

allel combination of linear and nonlinear systems. Figure 2–2 presents this parallel-

cascade model structure, intrinsic stiffness is represented by a non-parametric, linear,

dynamical system, while reflex stiffness is represented by a block-oriented, nonlinear

pathway comprised of a series combination of a differentiator, a static nonlinearity

and a non-parametric, linear, dynamical system. They used an iterative, correlation-

based, identification algorithm for the estimation of the two parallel pathways using

joint position and total torque signals [12].

This model and associated identification algorithms, has been used to character-

ize the intrinsic and reflex components of dynamic stiffness in the ankle, trunk and

wrist joints in both normal and pathological subjects during quasi-stationary exper-

iments [12, 17, 62, 63, 64, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]. Results show that

in spinal cord injured and stroke patients there is significant increase in reflex gain

compared to that of aged matched controls [17, 91]. Moreover, the parallel-cascade

model has been used to characterize the modulation of the intrinsic and reflex compo-

nents of ankle dynamic stiffness as a function of joint position and torque in healthy

subjects [11]. Intrinsic and reflex gain increase when the ankle is moved from a neu-

tral position towards dorsiflexion and decreased when moved towards plantarflexion.
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Figure 2–2: Overall representation of joint dynamics with two parallel pathways
representing the intrinsic and reflex contributions. Θpsq, TQIpsq, TQRpsq and TQpsq
are the Laplace transform of the joint position, intrinsic, reflex and total torque
respectively.

Intrinsic gain increased steadily with voluntary torque, whereas reflex gain showed

an initial increment and the decreased as the voluntary torque increased.

One drawback of the non-parametric approach is that it is difficult to relate the

model parameters to physiological meaningful variables. Intrinsic gain, or joint elas-

ticity, can be obtained directly from the estimated non-parametric, intrinsic model

by simple integration. However, extracting other physiologically relevant parame-

ters, such as joint viscosity, or reflex gain and natural frequency requires non-linear

optimization methods [92, 62]. These methods are not guarantee to converge to the
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true values, and if a good initial estimate is not provided they it will often fail to

converge [101].

Our laboratory has also proposed several parametric models to describe the

intrinsic and reflex components of dynamic joint stiffness. These include autoregres-

sive [102, 103], state-space [62, 63, 104], and transfer function models [64, 65]. The

autoregressive model of Kukreja et.al, represents the linear dynamics in the intrin-

sic and reflex components with second order, discrete-time, autoregressive, moving-

average models with exogenous inputs, and approximates the reflex nonlinearity with

a second-order polynomial [102]. The authors claim that the estimated parameters

can be easily related to physiologically relevant variable; however, simulations showed

that the model estimates were biased when noise was added to the output so that

the true model parameters cannot be retrieved.

A recent survey found that both state-space and transfer function based ap-

proaches provide superior results than the non-parametric approach. Likely due to

the significantly reduction in the number of free-parameters, and the ability of both

methods to handle complex, non-white, biological noise. Both approaches provided

similar results; however, the transfer function model for dynamic joint stiffness has

significantly fewer free-parameters than the state-space model, and its estimated

parameters can be directly linked with physiologically relevant parameters [105].

Time-varying methods

Several studies have characterized intrinsic dynamic stiffness during time-varying

conditions ignoring stretch reflex contributions [106, 107, 108, 109, 110]. We have

introduced methods to estimate intrinsic and stretch reflex mechanisms using the
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parallel-cascade model structure during time-varying conditions; however, these meth-

ods require very large data sets for parameter estimation, which severely limits their

application [103, 111, 112, 113]. These studies have demonstrated that the values

obtained during quasi-stationary experiments are significantly larger than those ob-

served during time-varying conditions at matched operating points; consequently,

time-varying methods are required to characterize joint dynamics during function.

Linear, time-varying techniques have been developed to characterize intrinsic

stiffness during time-varying conditions. These methods usually employ an ensemble

identification approach for parameter estimation, which requires many input-output

trials showing the same time-varying behavior [108]. Using this methodology, studies

have estimated the time-varying, intrinsic dynamics during imposed [107, 108, 114],

and voluntary movements [106, 110, 109, 115].

When the changes in the time-varying, model parameters are fast and large,

ensemble identification algorithms require hundreds (and sometime thousands) of

input-output realization showing the same time-varying behavior for estimation of

the parameters’ time-course. Obtaining these hundreds of input-output trials pre-

senting the same underlying time-varying behavior is challenging as it requires long,

fatigue inducing experiments.

Another approach is to use adaptive methods for estimation of ankle dynamics

stiffness to produce on-line estimates of intrinsic and reflex torque [116, 117]. How-

ever, these methods are limited to a particular type of input and the identification

algorithm only provides a coarse estimate of the parameters’ time-course.
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Linear-parameter-varying methods

A limitation of time-varying methods is that models are identified for a particular

trajectory of the operating point and cannot be used to predict the joint torque for

a new trajectory. Therefore, it is necessary to create a new time-varying model for

each trajectory of the operating point.

An alternative to time-varying models, is to assume that the model parameters

are modulated by a measurable or estimable signal called scheduling variable. Such

linear-parameter-varying (LPV) Models relate the changes in the model parameters

with an underlying modulating signal, the scheduling variable. LPV methods have

been recently used to estimate intrinsic stiffness in trials when only joint torque [118]

or joint position changed [119] so that the scheduling variable was easily defined.

The advantage of the LPV approach over time-varying methods is that is possi-

ble to obtain accurate estimates of the system dynamics for all possible trajectories

of the operating point from a single trial, provided that the scheduling variable has

a rich enough amplitude distribution. This facilitates physiological interpretation by

explicitly describing the relationship between stiffness parameters and the scheduling

variable. Moreover, it provides models that can predict torques for novel operating

point trajectories. The main drawback of this approach is that the scheduling vari-

able and its relation to the model parameters must be defined a priori. This task has

been achieved for simple experiments where only the joint position or torque changes.

However, under general conditions this task is non-trivial and sometimes impossible.

For example, Ludvig and Perreault reported that a proper choice of scheduling vari-

able was not found in estimating the knee stiffness in a position varying task [120].
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To summarize, estimation of joint dynamic stiffness is an important and chal-

lenging problem. Joint dynamics are nonlinear and the model parameters are heavily

modulated during function. During static conditions, where the operating point does

not change significantly, non-parametric and parametric, nonlinear models have been

successfully used to describe intrinsic and reflex stiffness. However, during function,

where there are large changes in the trajectory of the operating point, results have

been limited to describe the time-varying intrinsic dynamics, ignoring the complex,

nonlinear, reflex mechanisms.

2.4 Modulation of Dynamic Joint Stiffness

Ankle dynamic stiffness is heavily modulated by different factors, including joint

trajectory, voluntary torque, and functional task. Next I will discuss the different

factors known to influence dynamic joint stiffness.

2.4.1 Modulation with operating point

Quasi-stationary results

Quasi-stationary results have shown that both intrinsic and reflex dynamic stiff-

ness are strongly modulated by joint position and torque. Weiss et.al. studied how

intrinsic ankle stiffness changed with joint position and found that the joint vis-

cosity and elasticity increased when the ankle was moved from a neutral position

toward dorsiflexion or plantarflexion [52]. They also found that the reflex EMG in-

creased significantly when the ankle was moved toward plantarflexion and decreased

when moved towards dorsiflexion [121]. Mirbagheri et.al. studied the modulation

of intrinsic and reflex components of dynamic ankle stiffness with joint position on

healthy [11], and spinal cord injured subjects [17]. The gain of intrinsic and reflex
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pathway increased when the ankle was moved from dorsiflexion towards plantarflex-

ion. Jaleleddini et.al. studied the modulation of the reflex, static-nonlinearity as a

function of ankle position. They found that the threshold of reflex, static-nonlinearity

decreases when moving from dorsiflexion towards plantarflexion whereas the slope,

or reflex gain, increased [62]. Furthermore, MacKay et al. found that the elbow

elasticity increased with elbow flexion [122].

Multiple studies have shown that intrinsic joint stiffness is at a minimum at rest

and increases steadily with joint torque [11, 66, 23, 80, 123]. Mirbagheri et.al. stud-

ied the modulation of reflex ankle stiffness with voluntary torque during stationary

experiments [11]. Reflex gain increased when the subjects exerted a small level of

torque and then decreased when further torque was produced. Schouten et.al. found

similar results for the arm [86].

Time-varying results

The modulation of dynamic joint stiffness have also been studied during imposed

movements that included large changes in the joint trajectory using linear, time-

varying identification techniques. Kirsch et.al demonstrated that the ankle elasticity

changed significantly when there is a transient change in joint position [107], they

found that stationary results were consistent with the joint elasticity and viscosity

found before and after the movement but the values observed during the movement

were not attainable in stationary experiment with matched positions. Others found

that joint dynamics stiffness decreased, compared with stationary results, during

movement initiation at the wrist [89], elbow [72] and knee [124].
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Modulation of dynamic joint stiffness during voluntary movements have also

been studied using linear, time-varying identification techniques. Bennett et al. esti-

mated the elbow intrinsic stiffness during cyclic movements and found that the elas-

ticity and viscosity were much lower than those during posture experiments [106].

Recent studies of ankle intrinsic stiffness during the gait cycle, showed that the ankle

elasticity and viscosity increased during the stance phase of walking and decreased

before the beginning of the swing phase [34, 109, 110, 125].

2.4.2 Task dependency

Stretch reflex gain has been shown to change during function and to depend

on the instructions given to the subject. EMG reflex response are smaller when the

subject is asked to maintain a constant force than when instructed to maintain a

constant position [126]. This might be linked to the fact that during constant force

experiments, the reflex response from muscle spindle activation results in undesired

force changes which do not contribute to the task [47].

Capaday and Stein showed that EMG reflex gain was heavily modulated through-

out the gait cycle; the reflex response was largest for walking and smaller during

running [127, 128]. They suggested that this adaptation of the reflex response is

dependent on joint position and torque, and is influenced by central mechanisms.

2.4.3 Additional dependencies

In addition, stochastic perturbations to the ankle decrease the EMG reflex re-

sponse to a sudden stretch in proportion to the main absolute velocity [59]. Static

stretches decrease joint intrinsic stiffness [129]. Finally, joint dynamic stiffness de-

pends on muscle history and is affected by fatigue [130].
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To summarize, dynamic joint stiffness is a complex and highly nonlinear system.

An approach to deal with these nonlinear dependencies is to assume that the system

is time-varying. In this way, is possible to estimate time-varying models that describe

the system behavior for a particular trajectory of the modulation signals. Another

approach is to explicitly relate the joint dynamics with each of the modulation signals

(e.g. joint position, joint velocity, muscle activation level) and find a global, nonlinear

model of joint dynamics stiffness able to predict the intrinsic and reflex torque in all

possible conditions. However, this is impossible to do during function as the joint

dynamics is modulated by a variety factors many of which are not measurable, not

completely understood or simply not known.

2.5 Thesis Rationale

Considerable work has been done in the characterization of joint biomechanics

during stationary conditions. These experiments have demonstrated that the joint

dynamic stiffness is modulated by multiple factors, including changes in joint position

and torque. However, quasi-stationary estimates cannot be interpolated to describe

the dynamic joint stiffness during time-varying conditions; the joint elasticity and

viscocity measured during posture is significantly larger than those observed during

movement.

The limited number of studies that have examined dynamic joint stiffness during

time-varying conditions used an ensemble-based algorithm for parameter estimation.

This approach requires hundreds of input-output trials having the same time-varying

behavior, which is very difficult to achieve experimentally and requires long, fatigue
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inducing experiments. Moreover, these studies focused only in the intrinsic com-

ponent of joint dynamic stiffness, ignoring completely the complex, nonlinear reflex

mechanisms. Other alternatives, such as LPV methods, that can characterize the

system from one single trial, require significant a priori information that is often not

available.

The objective of this thesis is to develop and validates novel time-varying, iden-

tification algorithms able to characterize joint dynamics stiffness during function.

The novel methodology will make use of a time-varying, parallel-cascade structure

to describe the intrinsic and reflex components of dynamic stiffness. The novel, time-

varying identification algorithms will estimate the linear and nonlinear components

of the parallel-cascade model of joint dynamic stiffness using significantly less data

than ensemble approaches.
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CHAPTER 3
Review of Relevant System Identification Methods

This chapter reviews the system identification approaches that are the basis of

the novel algorithms developed in this thesis.

There are two main approaches to the modeling of biomedical systems: A priori

and data-driven or black-box models. A priori models are based on first principles,

knowledge of the system structure, and the function of each subsystem. This infor-

mation is combined to describe the behavior of the system. Normally, each parameter

in the model corresponds to a physiologically relevant component and so analysis of

a priori models can provide physiologically relevant information [131].

A priori models typically includes a large set of parameters that must be ad-

justed to provide a desired behavior or estimated directly from data. This is a

daunting task for systems that include nonlinear relations between variables, as it

commonly occurs in biomedical systems. In addition, the data records are contami-

nated by noise which increases the uncertainty in the parameter estimates [131].

In contrast, data-driven models make few assumptions about the system. The

system is described a black-box that mimics the behavior of the physiological system.

This class of system is useful to describe the relation between input and outputs but it

can be difficult to assign a physiological interpretation to the model parameters [132,

133].
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A common use for system identification is to determine a model to predict the

plant’s response to design a controller that will produce a desired output [134]. In

this context it is beneficial to have the simplest possible model that can describe the

system dynamics, and accurately predict the plant’s response. In this application,

the estimated model parameters provide no direct information about the system

properties.

Another application of system identification is to gain insight into the character-

istics of a system. In this case, the input/output data is used to extract information

about the characteristics of the systems. For such application, models do not nec-

essarily need to be simple. Rather, they should reflect the current knowledge of the

system structure so that estimating its parameters will provide information about

the system properties [132, 133].

The system identification problem may be understood with the aid Fig. 3–1,

which is based on that given in M. Verhaegen and P. Dewilde [2]. The system

consists in everything inside the dotted box; it is composed of a deterministic and a

stochastic component. The stochastic part of the system is driven by a white-noise

sequence e2ptq, which cannot be measured. The deterministic component or plant

is driven by a controlled input uptq combined with the filtered version of a non-

measurable white-noise process e1ptq. In addition, it is assumed that the controlled

input is not directly accessible, rather, only a noise corrupted version of it, puptq, can

be measured.
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Figure 3–1: Block diagram representing the system identification problem. Adapted
from [2].

The noise-free output, xptq, is the sum of outputs from the deterministic and

stochastic components. However, only yptq, a noise corrupted version of output

signal, can be measured.

Given this general structure, several different problems can be described:

• Identification of the deterministic system or plant. The objective is to deter-

mine the relation between the input and output uptq and xptq, assuming that

the stochastic components e2ptq is zero. In general, both input and output may

be corrupted by noise. However, it is usually assumed that the input noise,

vuptq, is negligible. This is the problem that will be addressed for the rest of

this thesis.

• Identification of the noise process, F2. In this case, the objective is to find

the relation between e2ptq and xptq, given that only the measured output, yptq

is available. Usually the controlled input, uptq is assumed to be constant or
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periodic. This identification problem is of interest for situations where the

controlled input cannot be measured or it not known.

• Identification of the complete system. The objective is to use the input and

output signals to determine the stochastic and deterministic component of the

systems, in addition, the characteristics of e2ptq should also be estimated. This

problem formulation is of interest when input and output signals are influenced

by noise, as in the case of closed-loop identification.

3.1 Linear systems

A linear system obeys two properties: superposition and scaling. Thus, if H is

a linear system, u1ptq and u2ptq are two input signals, y1ptq and y2ptq are two output

signals, k is a constant, and

y1ptq “ H pu1ptqq ,

y2ptq “ H pu2ptqq ,

then

H pku1ptq ` ku2ptqq “ k ry1ptq ` y2ptqs .

3.1.1 Models of linear systems

Parametric models: A continuous-time parametric model of a linear system con-

sist of a differential equation relating the input(s) and output(s) of the systems
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and describing its dynamics. In discrete-time, this representation may be ap-

proximated by a difference equation. This procedure involves the approxima-

tion of the differential operator (s) by means of a numerical approximation.

This is commonly achieved using the bilinear transformation [135].

In discrete-time, the relation between input and output can be expressed in

terms of a linear difference equation as [136]:

yptkq ` a1yptk ´ 1q ` ¨ ¨ ¨ `ana
xptk ´ naq “

b0uptkq ` ¨ ¨ ¨ ` bnb
uptk ´ nbq`

eptkq ` c1eptk ´ 1q ¨ ¨ ¨ ` cnc
eptk ´ ncq,

or more compactly as

Apq´1qyptkq “ Bpq´1quptkq ` Cpq´1qeptkq, (3.1)

where Apq´1q “ 1`a1q
´1`¨ ¨ ¨`ana

q´na , and q´1 is the backward shift operator.

This is an auto-regressive, moving average exogenous (ARMAX) model, the

current output depends on an exogenous input, uptkq, that is usually known,

and an innovation process, eptkq, that is usually unknown, and past values of

the output. For the model in Fig. 3–1, the fraction Bpq´1q{Apq´1q corresponds

to the deterministic model H , whereas the fraction Cpq´1q{Apq´1q corresponds

to the stochastic model F2. This model has several special cases:

Auto-regressive (AR) model

Apq´1qyptkq “ eptkq,
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the current output depends on the current disturbance (eptkq) and past

output values.

Moving-Average (MA) model

Apq´1qyptkq “ Cpq´1qeptkq,

the current output depends on current and past values of the disturbance

(eptkq) and past output values.

Auto-regresive, exogenous input (ARX)

Apq´1qyptkq “ Bpq´1quptkq ` eptkq,

the current output depends on the current value of the disturbance (eptkq),

the current and past values of the exogenous input (uptkq) and past output

values.

Finite Impulse Response (FIR)

yptkq “ Bpq´1quptkq ` eptkq,

the current output only depends on the current value of the disturbance

(eptkq), and the current and past values of the exogenous input (uptkq).

This model structure is a non-parametric model and due to its simplic-

ity is commonly used to model biomedical systems. Fast, and accurate

algorithms have been developed for parameter estimation [133].

It can be noticed that in all these model structures (except for the FIR model)

assume that the fraction representing the deterministic and stochastic models
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share the same denominator (Apq´1q); this is a strong assumption that is of-

ten not valid [137]. A generalization of these model structures is to assume

that the deterministic and stochastic models have different numerators and

denominators; this gives the Box-Jenkins model [136, 138]:

yptkq “
Bpq´1q

Apq´1q
uptkq `

Cpq´1q

Dpq´1q
eptkq. (3.2)

For the model in Fig. 3–1, the fraction Bpq´1q{Apq´1q corresponds to the de-

terministic model H , whereas the fraction Cpq´1q{Dpq´1q corresponds to the

stochastic model F2. The Box-Jenkins model structure contains all the other

structures as special cases and therefore the methods used to estimate its pa-

rameters can be adapted to identify the other model structures. An important

characteristic of the Box-Jenkins structure is the independent characterization

of the deterministic and stochastic components of the model, that is, the linear

system that processes the exogenous input does not share the same dynamics as

the linear system that processes the random disturbances. It will be made clear

through this thesis, that this independent parametrization of the deterministic

and stochastic components make this model particularly useful for describing

biomedical systems, including dynamic joint stiffness.

A key property of the Box-Jenkins model, that results from the independent

parametrization of the deterministic and stochastic components, is that the

estimates of the process (Bpq´1q{Apq´1q) and noise (Cpq´1q{Dpq´1q) plants are

asymptotically independent [139, 65]. In consequence, when the noise model is

not of interest or its structure is unknown, the noise can be treated as white,
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i.e. Cpq´1q “ Dpq´1q “ 1, and the estimates of the process plant will still be

unbiased. This result does not hold for any other parametric model structure.

State Space models: An alternative structure is a state space model. In the dis-

crete case, the system is represented by the set of equations

xptk ` 1q “ Axptkq ` Buptkq,

yptkq “ Cxptkq ` Duptkq,

where uptkq, yptkq and xptkq are the system’s input, output and states. And

A, B, C and D are matrices that describe the system dynamics. There are

methods for estimating these matrices directly from input-output data [140].

However, these methods estimate the system matrices within a similarity trans-

formation, making it difficult to relate the estimated model to the parameters

of the original differential equation.

Methods for estimating dynamic joint stiffness using non-parametric [12], state-

space [63, 62], and Box-Jenkins models [64] have been previously developed. A recent

survey found that the state-space and Box-Jenkins based approaches provide better

estimates than the non-parametric approach. This because they had many fewer free-

parameters [105]. Both parametric approaches provided similar estimates; however,

the Box-Jenkins model for dynamic joint stiffness has fewer free-parameters than

the state-space model. This is important for the modeling of time-varying systems,

where each model parameter must be estimated at each point in time. For this

reason, this thesis will focus in the parametric identification of Box-Jenkins and FIR

model structures.
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3.1.2 Identification of linear systems

The study of linear systems has a rich history; many methods and algorithms

have been developed to identify them, and linear identification methods have served

as the kernels for the developments of tools for the analysis of more complex systems.

Therefore, it is important to review the basics of linear systems identification.

The simplest linear statistical model is a linear combination of input variables:

xptq “ ω0 ` ω1φ1ptq ` ¨ ¨ ¨ ` ωDφDptq, (3.3)

where φjptq are, possibly nonlinear, functions of input (uptq) and output (xptq) vari-

ables.

For example, this model structure is general and can be used to represent

continuous-time, differential equations:

dx2ptq

dt2
` a1

dxptq

dt
` a2xptq “ b2

duptq

dt
` b1uptq ` b0,

by using the notation of (3.3) and setting

φ0ptq “ 1, φ1ptq “ uptq, φ2ptq “
duptq

dt
, φ3ptq “

dyptq

dt
, φ4ptq “

dy2ptq

dt2
,

and

ω0 “
b0

a2
, ω1 “

b1

a2
, ω2 “

b2

a2
, ω3 “ ´

a1

a2
, ω4 “ ´

1

a2
.

The discrete-time, difference equation

xptkq ` a1xptk ´ 1q ` ¨ ¨ ¨ ` ana
xptk ´ naq “ b0uptkq ` ¨ ¨ ¨ ` bnb

uptk ´ nbq,

can be re-parametrized similarly.
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Using vector notation, (3.3) can be expressed as

xptkq “ ωTφ, (3.4)

where

ω “ rw0, ¨ ¨ ¨ , wDsT ,

φptq “ rφ0 ptkq , ¨ ¨ ¨ , φD ptkqs,

where φ0 ptkq “ 1, @t.

The system represented by the models (3.3) and (3.4) are not linear systems

as they do not satisfy the superposition and/or scaling properties. Rather, these

models are linear in the parameters [101] and are important in system identification

as there are efficient algorithms to estimate its parameters from input and output

data. However, the model (3.4) represents an ideal situation where neither the input

nor output are contaminated by noise. For this thesis, the input noise will not be

considered, however, the output noise cannot be ignored and its properties will play

a major role in the selection of parameter estimation algorithms. Therefore, the

models to be studied in this thesis have the form:

yptkq “ xptkq ` vptkq “ ωTφptq ` vptq, (3.5)

as shown in Fig. 3–1, vptq is a zero-mean, non-i.i.d, unmeasurable signal that is

independent of the controlled input uptq.
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In the context of Box-Jenkins model structure, the following relations hold:

xptkq “
Bpq´1q

Apq´1q
uptkq,

vptkq “
Cpq´1q

Dpq´1q
eptkq.

The Box-Jenkins model structure is a general linear model which contains all

other parametric models as special cases. Consequently, the model of (3.5) is also a

general representation of linear systems.

Next I will discuss different approaches for the identification of linear systems

models of the form (3.5):

Ordinary least-squares approach: The objective of the least-squares approach

is to find the parameter set ω that minimizes the sum of square errors between

the measured, sampled data and the output of the model, that is

E pωq “
1

2

Nÿ

tk“1

“
yptkq ´ ωTφptkq

‰2
, (3.6)

where N is the number of samples and the 1/2 is added for mathematical

convenience. Differentiating (3.6) with respect to ω, equating to zero and

solving for ω yields

pω “
`
ΦTΦ

˘´1
ΦTy, (3.7)

where

y “ ryp1q, ¨ ¨ ¨ , ypNqsT ,
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and

Φ “

»
———————–

φ0p1q φ1p1q ¨ ¨ ¨ φDp1q

φ0p2q φ1p2q ¨ ¨ ¨ φDp2q

...
...

. . .
...

φ0pNq φ1pNq ¨ ¨ ¨ φDpNq

fi
ffiffiffiffiffiffiffifl

Next I will discuss the convergence properties of the Ordinary Least Squares

estimator for the different model structures:

Convergence

The convergence of the least-squares estimates can be studied by asking

what happens as the number of data points goes to infinity. If ω˚ are the

true parameters values then

pω ´ ω˚ “
`
ΦTΦ

˘´1
ΦTy ´ ω˚,

“
`
ΦTΦ

˘´1
ΦTy ´

`
ΦTΦ

˘´1 `
ΦTΦ

˘
ω˚

“
`
ΦTΦ

˘´1 `
ΦT py ´ Φω˚q

˘

“
`
ΦTΦ

˘´1 `
ΦT

`
y ´

“
y ´ ΦTv

‰˘˘

“
`
ΦTΦ

˘´1 `
ΦTv

˘
.

It is necessary to distinguish between two of models structure:

• Non-parametric models (FIR filters):

The output is a function of an external variable, uptkq, the controlled
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input, that is, Apq´1q “ 1. Consequently, the matrix Φ is

Φ “

»
———————–

up1q up0q ¨ ¨ ¨ up1 ´ mq

up2q up1q ¨ ¨ ¨ up2 ´ mq

...
...

. . .
...

upNq upN ´ 1q ¨ ¨ ¨ upN ´ mq

fi
ffiffiffiffiffiffiffifl

As uptkq and vptkq are independent, and vptkq is zero mean, then

pω ´ ω˚ “
`
ΦTΦ

˘´1
p0q ,

pω ´ ω˚ “ 0.

Thus, estimates of the FIR parameters given by the least-squares

approach are unbiased provided the noise sequence vptkq is zero-mean.

• Parametric models:

For these models, the output is a function of the controlled input,

uptkq and past output values, that is

Apq´1q “ 1 ` a1q
´1 ` ¨ ¨ ¨ ana

q´na .

Consequently, Φ is

Φ “

»
———————–

yp1q ¨ ¨ ¨ yp1 ´ nq up1q ¨ ¨ ¨ up1 ´ mq

yp2q ¨ ¨ ¨ yp2 ´ nq up2q ¨ ¨ ¨ up2 ´ mq

...
. . .

...
...

. . .
...

ypNq ¨ ¨ ¨ ypN ´ nq upNq ¨ ¨ ¨ upN ´ mq

fi
ffiffiffiffiffiffiffifl
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or

Φ “

»
———————–

xp1q ¨ ¨ ¨ xp1 ´ nq up1q ¨ ¨ ¨ up1 ´ mq

xp2q ¨ ¨ ¨ xp2 ´ nq up2q ¨ ¨ ¨ up2 ´ mq

...
. . .

...
...

. . .
...

xpNq ¨ ¨ ¨ xpN ´ nq upNq ¨ ¨ ¨ upN ´ mq

fi
ffiffiffiffiffiffiffifl

`

»
———————–

vp1q ¨ ¨ ¨ vp1 ´ nq 0 ¨ ¨ ¨ 0

vp2q ¨ ¨ ¨ vp2 ´ nq 0 ¨ ¨ ¨ 0

...
. . .

...
...

. . .
...

vpNq ¨ ¨ ¨ vpN ´ nq 0 ¨ ¨ ¨ 0

fi
ffiffiffiffiffiffiffifl

“ Φxu ` Φv0

As uptkq and xptkq are independent of vptkq then

pω ´ ω˚ “
`
ΦTΦ

˘´1
pΦxu ` Φv0qv,

pω ´ ω˚ “
`
ΦTΦ

˘´1
Φv0v.

Now, if Cpq´1q “ Dpq´1q “ 1 (i.e., vptkq is a white, zero-mean signal),

then Φv0v “ 0 and

pω ´ ω˚ “ 0,

so that estimates converge asymptotically to the true values. How-

ever, if Cpq´1q ‰ 1 and/or Dpq´1q ‰ 1, so that vptkq is non-white,
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then Φv0v ‰ 0

pω “ ω˚ `
`
ΦTΦ

˘´1
Φv0v.

Which demonstrates that the estimates do not converge to the true

values but are biased. Furthermore, the bias term is a function of the

measured input, output, and the unmeasurable noise vptkq.

Instrumental variables: The ordinary least-squares approach can be extended to

give unbiased estimates of the parametric models by using instrumental vari-

ables in the estimation equation [136, 101, 141, 142]. Here, the estimation

equation (3.7), is replaced by

pω “
´
ΦT pΦ

¯´1 pΦTy, (3.8)

where

pΦ “

»
———————–

pφ0p1q pφ1p1q ¨ ¨ ¨ pφDp1q

pφ0p2q pφ1p2q ¨ ¨ ¨ pφDp2q

...
...

. . .
...

pφpNq pφ1pNq ¨ ¨ ¨ pφDpNq

fi
ffiffiffiffiffiffiffifl

where pφjptkq are the instrumental variables. The instrumental variables must

satisfy three conditions [141, 142]:

• ΦT pΦ ‰ 0

• ΦT pΦ is full rank

• pΦTv “ 0
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The first condition guarantees that the instrumental variable is correlated with

the input signal, the second condition guarantees that the inverse of (3.8) exists;

the third one guarantees the estimates provided by the instrumental variable

approach are asymptotically unbiased. Any signal that fulfills these conditions

can be used as instrumental variable. Multiple signals, such as an estimate

of the noise-free output, and past input values, have been used for different

applications [142]. In consequence, selecting the best instrumental variable

must be part of the identification process for each application.

Regularization and Bayesian estimation: One problem with the least-square

and instrumental variable estimation approaches is the need to select the model

order determined by the number of elements D`1 (3.3). So far, it has been as-

sumed that the model order is known a priori so that the matrices in (3.7) can

be constructed from input and output samples. However, in practice the order

is rarely known and so selecting it is an important part of the identification

procedure.

One common approach to select the model order is to add a regularization term

to the objective function (3.6) that penalizes the complexity of the model. That

is

E pωq “
1

2

Nÿ

tk“1

“
yptkq ´ ωTφptkq

‰2

Ordinary least squares

`
λ

2

Dÿ

j“1

|ωj|
p

Regularization

, (3.9)

where 0 ă λ ă 1 controls the relative weight of each component, and p defines

the type of regularization. A value of p “ 2 is called to quadratic regularization,

while p “ 1 is known as lasso regularization [143]. For p “ 2 there is an exact
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solution for ω, given by

pω “
`
λI ` ΦTΦ

˘´1
ΦTy, (3.10)

where I is the unitary matrix.

The parameter estimates pω will depend heavily on the regularization parameter

λ; for example, if λ « 0 then the regularization term will play an insignificant

role and the results will be similar to those of the ordinary least squares method.

Therefore, several methods have been used to find the optimal value of λ [144].

One popular method is to create a grid of possible values for the regularization

parameters and evaluate the cost function at each parameter, and select the

value of λ that provides the minimum error [145]. This approach is not ideal

as is time consuming and the algorithm often results in a non-optimal λ as it

is impossible to test all possible values.

Bayesian learning

An alternative approach to solve the regularization problem is to use

Bayesian or probabilistic learning algorithms for parameter estimation [143,

146]; in particular, the relevance vector machine [147, 148, 149]. Going

through the full details of this algorithm is beyond the scope of this thesis.

Consequently, only the foundation and main results will be presented.

In probabilistic learning, the unknown parameters ωj are regarded as sam-

ples from a pre-defined probability distribution (the prior) instead of fixed

numbers. The objective is then to estimate the parameters that define
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this probability distribution (the posterior), called hyper-parameters, us-

ing the information from the measured data (the evidence). In particular,

one method, the relevance vector machine, defines the priors of ωj as

Gaussian distributions with zero mean and precision (inverse of variance)

αj :

p pω|αq “
Jź

j“0

N
`
ωj |0, α

´1
j

˘
.

The use of Gaussian, zero-mean probability distributions as priors yields

a sparse solution, because the mean of the posterior distribution of a

parameter that is not needed to explain the measured will also be zero,

while the mean of posterior distribution of a parameter that is needed to

explain the measured will be centered around the true value.

In the Bayesian learning setting, the measured data is considered to be

sampled from a probability distribution defined by the input data, the

true model parameters and the noise, that is

p
`
yptkq|φptkq,w, β´1

˘
“ N pyptkq|xptkq, βq

where β is the precision of the noise signal vptkq. For the N samples, this

function, the likelihood, becomes

p py|Φ,w, βq “
Nź

tk“1

N
`
yptkq|Φ,w, β´1

˘
.
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Using the prior, the likelihood and the evidence, the posterior distribution

of the model parameters is [143]

p pω|y,Φ,α, βq “ N pω|m,Σq ,

Σ “
`
A ` βΦTΦ

˘´1
,

m “ βΣΦTy.

With A “ diagpαiq. The problem is reduced to finding the hyper-

parameters β and αi. The relevance vector machine does this by com-

puting the marginal likelihood of the evidence given the input (Φ), and

the hyper-parameters, using the product rule of probability, that is

p py|Φ,α, βq “

ż
p py|Φ,w, βq p pω|αq .

The parameters that maximize the marginal likelihood of the evidence

are found by differentiating and equating it to zero. This leads to the

following iterative procedure for parameter estimation [143]

αi “
γi

m2
i

,

βi “
N ´

ř
γiř

ryptkq ´ ωTφptkqs2

γi “1 ´ αiΣii,

where Σii is the ith diagonal element of Σ. The relevance vector machine

is an iterative algorithm where the user provides initial values for α and

β, and uses them estimate m and Σ. These are then used to update αi,
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γi and β. This process is repeated until there are no significant chances

in the parameter values.

3.2 Hammerstein Systems

H

Linear dynamics

g p‚‚‚q

Static Nonlinearity

Σ

F

uptkq ūptkq xptkq yptkq

eptkq

Figure 3–2: Block diagram representing a Hammerstein System.

As Fig. 3–2 shows, the Hammerstein system is a structure comprising a series

connection of a static nonlinearity followed by a linear dynamic element. This is

an important block-oriented structure that combines the simplicity of linear systems

with the generalization capacity of nonlinear systems. It has been successfully used

in a variety of research areas including biomedical engineering [12], signal process-

ing [150], and others [151, 152].

3.2.1 Identification of Hammerstein systems

Many different techniques have been developed for the identification of its pa-

rameters from input-output data. These techniques make different assumptions re-

garding the static nonlinearity, the linear system, the input characteristics and the

output noise [151]. The most commonly used techniques assume a parametric form

for the static nonlinearity, e.g., polynomial nonlinearity, radial basis functions, and

then estimate the parameters of the parametric, static nonlinearity and the linear

system. Other methods that make no assumptions regarding the structure of the
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static nonlinearity are restricted to a particular input, which severely limits their

applications [153, 154, 155].

Non-Iterative techniques: Arguably the most commonly used, and perhaps the

simplest, way to estimate the parameters of a Hammerstein system is to assume

a parametric model for the input nonlinearity and transform the Single-Input -

Single-Output (SISO) nonlinear systems into a Multiple-Input - Single-Output

(MISO) linear system. The linear systems identification techniques can be used

to estimate the parameters of the new, linear model. This approach has been

used to identify joint dynamics using different linear identification algorithms,

including correlation [12], sub-space [156, 157], and instrumental variable [64]

approaches.

The main advantage of this algorithms is that they estimate all the elements

of the Hammerstein system in one single step. However, they have some im-

portant drawbacks. The first is that this method significantly increases the

dimension of the unknown parameter vector, so that large data sets are re-

quired for reliable parameter estimation. Secondly, it is not straightforward to

convert the resulting MISO system back into the original SISO system, making

it difficult to interpret the estimated parameters.

Iterative approaches: Iterative approaches estimate the elements of the Hammer-

stein system in separate steps and does not require the estimation of additional

parameters. There are two types of iterative identification algorithms for Ham-

merstein systems: In the first approach, the linear element is estimated and its

inverse is used to predict ūptkq, the output of the static-nonlinearity. Then, the
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shape of the static-nonlinearity is estimated using uptkq and ūptkq. Now that

the shape of gp‚q is available, is possible to update intermediate signal ūptkq,

which is then used to update the estimate of the linear element [158]. One

main limitation of this method is that it requires Gaussian input signals [159].

The second approach divides the parameters of the static nonlinearity and

linear element in two sets, and defines a cost function for the estimation of

each parameter set. However, the estimated parameters related to the static

nonlinearity are a function of the input, output and the linear element; and the

estimated parameters related to the linear element are a function of the input,

output and static nonlinearity. This approach tackles this problem by finding

an initial estimate of the linear element, then the parameters related to the

static-nonlinearity are estimated using the current values of the linear element.

The linear element is then updated using the current estimate of the static-

nonlinearity. The algorithm iterates between those steps there are no significant

changes in the parameters [160]. Different versions of this algorithm have been

used for the estimation of joint [104, 159] and muscle dynamics [161, 162].

A series of papers by P. Stoica [163], E. Bai et.al [151, 164, 165] and G. Li

et. al [166] showed that this iterative identification approach for Hammerstein

systems converges to the true values starting from any arbitrary non-zero initial

condition provided that a normalization stage is included at the end of each

iteration. Additionally, this method is more robust to noise and less sensitive

to the input properties that the first class of iterative approaches [167].
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The iterative approach developed by E. Bai et.at [151] is probably the best

approach for identification of Hammerstein systems from biological systems as it:

i) Can be used with non-white inputs with arbitrary amplitude distributions, ii) is

guaranteed to converge to the true values, iii) requires minimum information about

the linear and nonlinear elements, and iv) provides consistent estimates for non-white

output noise.

3.3 Linear, Time-Varying Systems

The identification methods discussed so far assume that the system’s dynamics

is time-invariant. However, most biological system are time-varying, that is, their

dynamics changes with time or some other independent variable.

Methods for the identification of time-varying systems can be divided into three

categories depending on their underlying assumptions: i) Adaptive methods, these

methods use recursive identification algorithm to estimate the model parameters at

each time [101]. They assume that the time-varying parameters are random signals.

ii) Temporal expansion methods, expand time-varying parameters using a set of

predefined basis functions, transforming the time-varying identification problem into

a time-invariant problem [168]. They assume that the time-varying parameters can

be appropriately described by a linear combination of predefined basis functions. iii)

Ensemble methods, estimate the time-varying parameters from a series of responses

each exhibiting the same underlying time-varying behavior. Once the ensemble of

responses have been obtained, ensemble methods use time-invariant identification

techniques to estimate the time-varying parameters at each time [108]. They assume
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that is possible to obtain multiple input-output trials presenting the same underlying

time-varying behavior.

Each methods has its advantages and limitations. Thus, adaptive methods can

be used online, updating the estimated parameters with every new measurement.

These methods are commonly used in adaptive control and tracking, where the ac-

curacy of the parameter estimates is less important than the possibility of having

online predictions. Ensemble methods cannot be used online as they require mul-

tiple realization of the same time-varying process. However, provided that enough

data is available, these methods can accurately track fast, large changes in the sys-

tem dynamics. Temporal expansion methods cannot be used for online prediction

either. However, unlike ensemble approaches, temporal expansion methods can es-

timate the model parameters from one single input-output realization. There are

two main limitations associated with temporal expansion methods. First, the qual-

ity of the estimate depends on the appropriate selection of the basis functions; this

usually requires some a priori knowledge of the time-varying dynamics. Second,

the temporal expansion transforms the low-dimensional, time-varying system into

a high-dimensional, time-invariant system, with a large number of free parameters.

This implies that large data records are required for parameter estimation.

3.3.1 Parametric representation of time-varying systems

Using the vector notation introduced of (3.4), a time-varying system can be

expresses as

xptq “ ωT ptqφptq, (3.11)
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the dependency on time is made explicit and

ωptq “ rw0ptq, ¨ ¨ ¨ , wJptqsT ,

φptq “ rφ0 ptq , ¨ ¨ ¨ , φJ ptqs.

where ωjptq are time-varying parameters and φjptq are, possibly nonlinear, functions

of input (uptq) and output (xptq) variables.

In this representation, the weights ωjptq are continuous-time functions. This

continuous-time, time-varying system can be approximated by a set of discrete-time,

frozen equations at each sample time as

xptkq “ ωT ptkqφptkq, (3.12)

the continuous-time system is approximated by a set of frozen, discrete-time system

at each sample time tk. As Figure 3–3 shows, this approximation applies a zero-order-

hold to the time-varying parameters, so that they are treated as being constant, or

frozen between samples. There other approaches for this approximation of time-

varying system, Toth surveyed their advantages and drawbacks, concluding that

zero-order-hold approximation is adequate when the parameters are instantaneous

function of time (i.e, the current parameters value depends on the current time, not

on past or future time values), when this assumption is violated, other techniques

are required [169].

3.3.2 Identification of linear, time-varying systems

Next I will discuss in more detail the ensemble and temporal expansion methods

for identification of time-varying systems.These methods will be used in this thesis as
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Figure 3–3: Approximation of a continuous-time, time-varying parameter by a set of
frozen, discrete-time parameters.

the parameter identification will be performed offline and they provide more accurate

estimate that adaptive methods [108, 170].

Ensemble-based approach The ensemble approach relies on having an ensemble

of input-output trials with the same time-varying behavior, that is

y1ptkq “ x1ptkq ` v1ptkq,

...

yMptkq “ xMptkq ` vM ptkq,

where M is the number of elements in the ensemble. Given that each trial has

the same time-varying behavior then

y1ptkq “ ωT ptkqφ1ptkq ` v1ptkq,

...

yMptkq “ ωT ptkqφMptkq ` vMptkq.
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For time tk

yptkq “ ωT ptkqΦptkq ` vptkq,

where

yptkq “ ry1ptkq, ¨ ¨ ¨ , yMptkqsT ,

vptkq “ rv1ptkq, ¨ ¨ ¨ , vMptkqsT ,

ωptkq “ rw0ptkq, ¨ ¨ ¨ , wJptkqsT

and

Φptkq “

»
———————–

φ1,0ptkq φ1,1ptkq ¨ ¨ ¨ φ1,Jptkq

φ2,0ptkq φ2,1ptkq ¨ ¨ ¨ φ2,Jptkq

...
...

. . .
...

φM,0ptkq φM,1ptkq ¨ ¨ ¨ φM,Jptkq

fi
ffiffiffiffiffiffiffifl
.

So that at each discrete-time tk, the parameters can be estimated using least-

squares as

pωptkq “
“
ΦT ptkqΦptkq

‰´1
ΦT ptkqyptkq.

Repeating this procedure at each time will map out the time course. This

identification procedure can be implemented in matrix form and estimate all

the time-varying parameters in a single step.

Basis-expansion approach: The basis expansion approach assumes that the time

course of the model parameters can be described by a linear combination of
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pre-defined basis functions, that is

ωjptkq “
i“Qÿ

i“0

riΓi ptkq ,

where Γiptkq are the basis functions and ri their weights. Using this parametriza-

tion, the time-varying system can be described by

yptkq “
i“Qÿ

i“0

Jÿ

j“0

ri,jΓi ptkqφjptkq ` vptkq.

In vector notation, this equation becomes

y “ rΦ ` v,

where

y “ ryp1q, ¨ ¨ ¨ , ypNqsT ,

v “ rvp1q, ¨ ¨ ¨ , vpNqsT ,

r “ rr0,0, ¨ ¨ ¨ , r0,D, ¨ ¨ ¨ , rQ,0, ¨ ¨ ¨ , rQ,JsT

and

Φ “

»
———————–

Γ0 p1qφ0p1q ¨ ¨ ¨ Γ0 p1qφJp1q ¨ ¨ ¨ ΓQ p1qφ0p1q ¨ ¨ ¨ ΓQ p1qφJp1q

Γ0 p2qφ0p2q ¨ ¨ ¨ Γ0 p2qφJp2q ¨ ¨ ¨ ΓQ p2qφ0p2q ¨ ¨ ¨ ΓQ p2qφJp2q

...
. . .

...
. . .

...
. . .

...

Γ0 pNqφ0pNq ¨ ¨ ¨ Γ0 pNqφJpNq ¨ ¨ ¨ ΓQ pNq φ0pNq ¨ ¨ ¨ ΓQ pNqφJpNq

fi
ffiffiffiffiffiffiffifl
.

The model parameters can then be estimated using least-squares as

pr “
`
ΦTΦ

˘´1
ΦTy.

61



Using this re-parametrization, the J ` 1 time-varying parameters are approx-

imated by pQ ` 1q ˆ pJ ` 1q time-invariant parameters that can be estimated

using least-squares.
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CHAPTER 4
Identification of a Time-Varying, Box-Jenkins Model of Intrinsic Joint

Compliance

Authors: Diego L. Guarin and Robert E. Kearney

Journal: IEEE Transactions on Neural Systems and Rehabilitation Engineering

Year: 2016

In the parallel-cascade for dynamic joint stiffness, intrinsic stiffness is described

by a linear, dynamical model. Therefore, the identification of linear, system is im-

portant for the characterization of joint neuromechanics. However, most linear iden-

tification algorithms are limited to time-invariant models. Available methods for

identification of linear, time-varying systems require very long data records or pro-

vide coarse, on-line estimates of the parameters time-course. This chapter develops

and validates a new algorithm for the identification of linear, time-varying, transfer

function models that, contrary to classical algorithms, accurately tracks the fast,

large changes in the transfer function model parameters using only a few periodic,

input-output data segments of short duration. The new algorithm was applied to

the estimation of time-varying, intrinsic joint compliance during simulated walking,

showing that the new method is a valuable tool for the study of joint biomechanics

during function.
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Abstract

The mechanical properties of a joint are determined by the combination of intrin-

sic and reflex mechanisms. However, in some situations the reflex contributions are

small so that intrinsic mechanisms play the dominant role in the control of posture

and movement. The intrinsic mechanisms, characterized by the joint compliance,

can be described well by a second order, linear model for small perturbations around

an operating point defined by mean position and torque. However, the compliance

parameters depend strongly on the operating point. Thus, for functional activities,

such as walking, where position and torque undergo large, rapid changes, the joint

compliance will also present large, fast changes and so will appear to be Time-Varying

(TV). Therefore, a TV system identification algorithm must be used to characterize

these changes. This paper introduces a novel TV system identification algorithm

that achieves this. The method extends an instrumental-variable based algorithm

for the identification of linear, TV, parametric, Box-Jenkins models to use periodic

data. Simulation studies demonstrate that the new algorithm accurately tracks the

changes in intrinsic joint compliance expected during walking. Moreover, the method

performs well with the complex noise encountered in practice. Consequently the new

method should be a valuable tool for the study of joint mechanics during functional

activities.

4.1 Introduction

Joint compliance defines the dynamic relation between the torque generated

around a joint and its position. This property of the neuromuscular system plays a

vital role in the control of movement and posture as it determines the response of
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the joint to unexpected disturbances. Consequently, joint compliance and its inverse,

dynamic stiffness or impedance, have been the topic of many investigations [20, 1,

12, 171, 18]. Overall joint compliance is generated by a combination of intrinsic and

reflex mechanisms. However, there are many situations where reflex contributions

are either absent or small enough to be ignored. For example, recent experiments

suggest that reflexes are small during walking in healthy subjects [109, 110, 125].

This paper deals with the identification of intrinsic joint compliance during such

situations.

Previous studies have shown that under stationary conditions, joint compliance

varies with the joint position and torque generated around it [11, 172]. Thus, when

these change continuously during functional tasks, joint compliance is expected to

be time-varying (TV). Indeed, recent experimental results have documented large

changes in ankle compliance throughout the walking cycle [109, 110, 125]. In addi-

tion, the noise present in such experiments is neither white nor Gaussian; rather is

composed of: a low-frequency (ă0.01Hz) trend, a stochastic component band-limited

to 1 Hz, physiological tremor (with power up to 10Hz), and 60Hz noise [173, 174].

Consequently, estimating joint compliance requires a TV identification method capa-

ble of tracking large, rapid changes in system dynamics in the presence of complex,

colored noise.

There are three general approaches to TV system identification: 1) ensemble

methods [108, 175], where a large set of input-output realizations, each having the

same time-varying behavior, is used to estimate the time course of the parameters;
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2) stochastic identification [176, 101], where changes in the TV parameters are as-

sumed to be small between samples and are modeled as a stochastic process; and

3) deterministic identification [168, 170], where the TV parameters are assumed to

change deterministically and are modeled using a combination of predefined basis

functions.

Ensemble methods require hundreds of input-output realizations having the

same TV behavior; this is time consuming and difficult to obtain experimentally.

Nevertheless, ensemble methods have been used to characterize joint compliance

during different TV conditions [108, 106, 110, 112, 120, 109]. In contrast, both de-

terministic and stochastic methods estimate the TV parameters from one or a few

input-output trials [170, 103]. However, provided an adequate set of basis functions

is selected, deterministic methods perform better than stochastic methods as they

can track more rapid parameter changes and have lower estimation errors [170].

Despite these advantages, most deterministic methods identify models with the

ARMAX structure, shown in Fig. 4–1A, or its subclasses (i.e. ARMA, AR, ARX).

These structures assume that the noise is white, or that the process and noise plants

share the same dynamics. Neither assumption is valid for compliance experiments.

Consequently, using an ARMAX algorithm to identify TV joint compliance, where

the noise is not white, will yield biased results [101]. Unbiased results can be obtained

by using the Box-Jenkins (BJ) model structure, shown in Fig. 4–1B, where the noise

and process are modeled independently [139, 101].

A review of the literature found only one method for the identification of TV-

BJ models. This method uses instrumental variables and a deterministic parameter
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Apq´1q

Cpq´1q

Apq´1q

Σ
upkq ypkq

epkq

vpkq

xpkq Bpq´1q
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Figure 4–1: Graphical representation of A. ARMAX and B. BJ model structures.
upkq is the controlled input, xpkq is the noise-free output, ypkq is the noise corrupted
output, epkq is the uncontrolled, white disturbances and vpkq is the colored, output
noise. Apq´1q, Bpq´1q, Cpq´1q and Dpq´1q are polynomials on q´1.

identification approach [177, 101]. However, it operates on only a single input-output

record. This limits its utility for the study of TV systems, such as joint compliance

during walking, where due to the short duration of the gait cycle, and the large

changes that the joint dynamics undergoes during this short amount of time, multiple

cycles will likely be necessary to obtain accurate estimates.

This paper develops and evaluates the performance of an algorithm to estimate

TV-BJ models of intrinsic joint compliance. To do so, we: 1) extended the TV-BJ

identification algorithm [177] to use periodic, input-output trials of short duration,

and 2) developed a TV-BJ model for joint compliance. We demonstrated the utility

of the algorithm and explored its performance using data from simulations that

mimicked the behavior of intrinsic joint compliance expected during walking.

This paper is organized as follows: Section 4.2 briefly summarizes the instru-

mental variable approach to the identification of TV-BJ models and then extends it

to use periodic, input-output trials of short duration. Section 4.3 formulates a TV,
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discrete-time, BJ model of intrinsic joint compliance. Section 4.4 describes the sim-

ulation used to evaluate the performance of the new TV-BJ identification algorithm.

Section 4.5 presents the results of the simulation study. Section 4.6 summarizes the

contributions and discusses some important aspects of the method and its applica-

tion.

4.2 Time-Varying Box-Jenkins Identification Algorithm

A linear, TV, discrete-time, stochastic, BJ system can be described by [177]:

$
’’’’’’&
’’’’’’%

A pk, q´1q xpkq “ B pk, q´1q upkq,

vpkq “
C pq´1q

D pq´1q
epkq,

ypkq “ xpkq ` vpkq,

(4.1)

where xpkq is the noise-free output, upkq is the controlled input, vpkq is the colored

output noise, ypkq is the measured, noisy output, epkq is a zero-mean, white noise

process with normal distribution and variance σ2 that is uncorrelated with the input,

k P Z is the discrete time and q´1 is the backward shift operator, i.e., q´1xptq “

xpt ´ 1q.

Apk, q´1q and Bpk, q´1q are the TV polynomials

A
`
k, q´1

˘
“ 1 `

naÿ

i“1

aipkqq´i, (4.2a)

B
`
k, q´1

˘
“ b0pkq `

nbÿ

i“1

bipkqq´i, (4.2b)
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and Cpq´1q and Dpq´1q are the time-invariant (TI) polynomials

C
`
q´1

˘
“ 1 `

ncÿ

i“1

ciq
´i, (4.3a)

D
`
q´1

˘
“ 1 `

ndÿ

i“1

diq
´i. (4.3b)

4.2.1 Model Reparametrization

The TV parameters of Apk, q´1q and Bpk, q´1q can be described as linear com-

binations of basis functions:

aipkq “ αi,0 `
nαÿ

j“1

αi,jπjpkq, i “ 1, ¨ ¨ ¨ , na, (4.4a)

bipkq “ βi,0 `

nβÿ

j“1

βi,jπjpkq, i “ 0, ¨ ¨ ¨ , nb, (4.4b)

where αi,0 ‰ 0, and tπju
nα,nβ

j“0 is the basis function set (e.g.. orthogonal polynomials)

with π0pkq “ 1, @k. This transforms the TV model into a time-invariant (TI) model

with the constant parameters

ρ “ rα1,0 . . . αna,0 α1,1 . . . α1,nα
. . . αna,1 . . . αna,nα

β0,0 . . . β0,nβ
. . . βnb,0 . . . βnb,nβ

‰T
P R

nρ , (4.5)

where nρ “ napnα ` 1q ` pnb ` 1qpnβ ` 1q.
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4.2.2 Parameter Identification

Laurain et. al [177] showed that the parameter set (4.5) can be estimated from

input-output data as

ρ̂ “

«
1

N

Nÿ

k“1

φ̂f̂pppkqqqϕ̂T

f̂
pppkqqq

ff´1 «
1

N

Nÿ

k“1

φ̂f̂ pppkqqqyf̂pkq

ff
, (4.6)

where

ϕ̂f̂ pppkqqq “
”
´yf̂pk ´ 1q . . . ´ yf̂pk ´ naq ´ x̂

f̂
1pk ´ 1q . . .

´x̂f̂
nα

pk ´ 1q ¨ ¨ ¨ ´ x̂
f̂
1pk ´ naq . . . ´ x̂f̂

nα
pk ´ naq

u
f̂
0pkq . . . uf̂

nβ
pkq . . . u

f̂
0pk ´ nbq . . . uf̂

nβ
pk ´ nbq

ıT

, (4.7a)

φ̂f̂ pppkqqq “
”
´x̂f̂pk ´ 1q . . . ´ x̂f̂ pk ´ naq ´ x̂

f̂
1pk ´ 1q . . .

´x̂f̂
nα

pk ´ 1q ¨ ¨ ¨ ´ x̂
f̂
1pk ´ naq . . . ´ x̂f̂

nα
pk ´ naq

u
f̂
0pkq . . . uf̂

nβ
pkq . . . u

f̂
0pk ´ nbq . . . uf̂

nβ
pk ´ nbq

ıT

, (4.7b)

and

yf̂pkq “ f̂
`
q´1

˘
ypkq, (4.8a)

u
f̂
j pk ´ iq “ f̂

`
q´1

˘
ujpk ´ iq, (4.8b)

x̂
f̂
j pk ´ iq “ f̂

`
q´1

˘
x̂jpk ´ iq. (4.8c)

f̂
`
q´1

˘
“

˜
D̂

`
q´1

˘

Ĉ
`
q´1

˘
¸ ˜

1

F̂
`
q´1

˘
¸
. (4.9)
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With

x̂ pkq “
1

F̂ pq´1q

«
´

naÿ

i“1

nαÿ

j“1

α̂i,jx̂j pk ´ iq

`
nbÿ

i“0

nβÿ

j“0

β̂i,juj pk ´ iq

ff
(4.10a)

F̂
`
q´1

˘
“ 1 `

naÿ

i“1

α̂i,0q
´i. (4.10b)

The parameter estimator (4.6) depends on ϕ̂pkq and φ̂pkq; both of these depend

in turn on x̂pkq, the noise-free output, which is not directly observable. This problem

can be overcome through the use of an Expectation-Maximization algorithm, that

uses a Refined Instrumental Variable procedure [101], in which the current parameter

estimates are used to predict the noise-free output - the instrumental variable - which

is then used to update the parameter estimates. The procedure is repeated to refine

the estimates until there are no significant changes in the estimated parameters.

Identification Algorithm

The identification algorithm estimates the model parameters using (4.6) and

the refined instrumental variable approach from periodic data. The use of multiple

data periods presenting the same time variability allows this algorithm to accurately

estimate the parameters’ time-course from periods of short duration, such a those

observed during walking. Different from the method presented in [177], our algorithm

assumes that the model parameters are periodic and so it only estimates their time-

courses for one period using all the data. To achieve this, the basis functions are

selected to have a length equal to one of the periods and then repeated periodically

to match the length of the data record. Therefore, the algorithm estimates only one
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parameter set ρ̂ which is then used to compute the TV parameters for all periods.

The algorithm accounts for the effects of initial conditions, which are important

when the duration of each period is short, by exploiting the periodicity of the signals

and concatenating the vectors and matrices as expressed in steps 4, 5, and 6 of the

algorithm.

Algorithm 1 estimates a TI noise model and a TV process model. However, the

estimates of the noise and plant parameters are asymptotically independent [139, 65].

In consequence, when the noise model is not of interest or its structure is unknown,

Algorithm 1 can be used assuming the noise is white, i.e. Cpq´1q “ Dpq´1q “ 1, and

the estimates of the process plant model will still be unbiased.
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Algorithm 1 Identification TV-BJ from periodic data

Input: tympkquNk“1, tumpkquNk“1, tπjpkqu
N, maxpnα ,nβq

k“1, j“0 , na, nb, nc and nd. The sub-
index m “ 1, . . . ,M represents the cycle number.

Output: tÂpk, q´1quNk“1 , tB̂pk, q´1quNk“1 and tx̂mpkquNk“1

1. Find an initial estimate of ρ̂0 by assuming that the system is TI and using the
Refined Instrumental Variable algorithm from [101]. Set D̂0pq´1q “ Ĉ0pq´1q “ 1 and
the counter r “ 0.
2. Estimate the instrumental variable tx̂mpkquNk“1 via (4.10a)
3. Form the filter

f̂ prq
`
q´1

˘
“

D̂prq
`
q´1

˘

Ĉprq
`
q´1

˘
F̂ prq

`
q´1

˘ ,

4. Filter the signals
u “ ru1p1q ¨ ¨ ¨u1pNq ¨ ¨ ¨uM p1q . . . uM pNqsT ,

x̂ “ rx̂1p1q ¨ ¨ ¨ x̂1pNq ¨ ¨ ¨ x̂M p1q . . . x̂M pNqsT ,

y “ ry1p1q ¨ ¨ ¨ y1pNq ¨ ¨ ¨ yM p1q . . . yM pNqsT ,

with f̂ prqpq´1q and then segment the results to generate the associated signals tyf̂mpkquNk“1,

tuf̂
mpkquNk“1 and tx̂f̂

mpkquNk“1.

5. Use the basis functions tπjpkqu
N, maxpnα,nβq
k“1, j“0

to form the regressor-matrices tϕ̂
f̂ ,mpppkqqquNk“1

and

tφ̂
f̂ ,m

pppkqqquNk“1
using (4.7a) and (4.7b).

6. Organize the vectors as

φ̂
f̂

“

»
————————————–

φ̂
f̂ ,1

ppp1qqq
...

φ̂
f̂ ,1

pppNqqq
...

φ̂
f̂ ,M

ppp1qqq
...

φ̂
f̂ ,MpppNqqq

fi
ffiffiffiffiffiffiffiffiffiffiffiffifl

, ϕ̂
f̂

“

»
————————————–

ϕ̂
f̂ ,1ppp1qqq
...

ϕ̂
f̂ ,1

pppNqqq
...

ϕ̂
f̂ ,M

ppp1qqq
...

ϕ̂
f̂ ,M

pppNqqq

fi
ffiffiffiffiffiffiffiffiffiffiffiffifl

,yf̂ “

»
—————————————–

y
f̂
1

p1q
...

y
f̂
1

pNq
...

y
f̂
M p1q
...

y
f̂
M pNq

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffifl

7. Update the parameter estimates as

ρ̂pr`1q “
”
φ̂
f̂
ϕ̂T

f̂

ı´1 ”
φ̂
f̂
yf̂

ı
.

8. Update the instrumental variable tx̂mpkquNk“1 and compute the noise signal as

v̂mpkq “ ympkq ´ x̂mpkq.

Use the ensemble of noise signals to estimate the noise model parameters using an ARMAX

identification routine [136].
9. If the difference between ρ̂pr`1q and ρ̂prq is not significant or, if the maximum number
of iterations is exceeded, go to step 10, else increment r and go to step 3.
10. Compute Âpk, q´1q and B̂pk, q´1q for all k as

âipkq “ α̂i,0 `
nαÿ

j“1

α̂i,jπjpkq, b̂ipkq “ β̂i,o `

nβÿ

j“1

β̂i,jπjpkq.



4.3 Intrinsic Joint Compliance

At a given operating point, defined by the joint position and torque pτ0, θ0q, the

relation between joint position and torque for small perturbations can be approxi-

mated by the continuous-time, second-order, linear system [12, 178, 109]:

τptq “ I
d2 rθptqs

dt2
` B

d rθptqs

dt
` Kθptq, (4.11)

where I, B and K are the joint inertia, viscosity and elasticity; θptq and τptq are

the join position and torque; and t P R is the continuous time. When the operating

point changes with time, the model parameters will be time dependent so that the

intrinsic response of the joint to the small perturbations can be approximated about

each operating point pτ0ptq, θ0ptqq as [106]:

τptq “ I
d2 rθptqs

dt2
` Bptq

d rθptqs

dt
` Kptqθptq, (4.12)

By assuming a zero-order-hold approximation on the TV parameters, this model can

be approximated by a set of linear models. Each model is assumed to be fixed at

each sampling point so that the model parameters do not change between samples.

The TV, joint compliance, at time k, can be expressed as

Θpsq “
1

Is2 ` Bpkqs ` Kpkq
T psq (4.13)

where Θpsq and T psq are the Laplace transformation of the joint position and torque.

Algorithm 1 identifies discrete, TV-BJ systems; therefore, this continuous-time model

is approximated by a TV, discrete-time model. Thus, the input-output relation at
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Figure 4–2: Block diagram describing the simulated, continuous-time, TV differential
model. The red signals are available for measurements.

time k can be represented by the discrete, TV-BJ model [179]:

θpkq “
b0pkq p1 ` 2q´1 ` q´2q

1 ` a1pkqq´1 ` a2pkqq´2
τpkq, (4.14)

where b0pkq, a1pkq and a2pkq are discrete-time, TV parameters. The noise corrupted

output can then be expressed as

zpkq “ θpkq ` ξpkq, (4.15)

where ξpkq is additive noise.

4.4 Simulation study

4.4.1 Methods

The utility of the new algorithm for the identification of TV joint compliance

was evaluated using simulations of human ankle compliance throughout the walking

cycle.
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The TV, differential equation (4.12) was implemented as shown in Fig. 4–2

and solved numerically using Simulink (MathWorks) to determine the joint position

(θpkq), velocity ( 9θpkq) and acceleration (:θpkq) generated in response to perturbation

torque τpkq. Fig. 4–3 shows the simulated model parameters as a function time.

The elastic and viscous parameters varied periodically and the inertial parameter

was held constant. The time trajectories during the gait cycle were by obtained

interpolating the values reported by Rouse et. al [109] and Lee et. al [110, 125] at

different points through the cycle.

The noise amplitude was adjusted to give an average signal-to-noise ratio (SNR)

of 10dB across the record. This SNR is lower than expected experimentally and so

it represents a challenge to the identification algorithm [112].

Two types of noise were used in the simulations: (i) white, Gaussian noise,

and (ii) experimentally-based noise, derived from a library of experimental signals

of ankle torque recorded while subjects maintained a constant torque with fixed an-

kle position [173]. The library comprised two records, each lasting 120s, from six

subjects generating dorsiflexing torques corresponding to 5%, 10% and 15% of their

maximum voluntary contractions. For each simulation trial, a section of the recorded

torque noise was selected at random, the mean torque was removed and the residual

was filtered using the differential, TV model of (4.12) to generate the equivalent,

TV position noise signal. Afterwards, a stochastic, white-Gaussian component, rep-

resenting the measurement noise, was added to the noise sequence. Fig. 4–4 shows

examples of these two types of noise, demonstrating their very different character-

istics. The top panel show the white-Gaussian noise signal while the bottom panel
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Figure 4–3: Simulated time-varying joint compliance parameters: A) Stiffness , B)
viscosity and C) inertia. Vertical lines divide the gait cycle in its sub-phases starting
at heel-strike: early stance (ESP), mid-stance (MSP), terminal stance (TSP), pre-
swing (PSP), and swing phase (SWP).

shows the experimentally-based noise, composed of experimental data filtered with

a TV model (brown line) and a stochastic component.

Simulations were run for durations between 3.375s and 45s, corresponding to 3

until 40 walking cycles with a torque input consisting off a Pseudo-Random Binary

Sequence (PRBS) with a peak-to-peak amplitude of 2Nm and a 100ms switching

rate. The sampling rate of the simulations was 1kHz and data were decimated to
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Figure 4–4: Two types of position noise used in the simulations: A) White-Gaussian
noise, B) Experimentally-Based noise, composed of experimental data filtered with
a TV model (brown line) added to a stochastic, white-Gaussian component (blue
line).

200Hz for analysis. Fig. 4–5 shows the torque input (τpkq), and resulting noise-free

and noisy position signals (θpkq and zpkq) for one cycle of a typical simulation trial.

Each simulation trial comprised two simulation runs using different input real-

izations. The output of the first run was contaminated with additive noise and used

to estimate a TV model; validation was performed using the second run. Monte

Carlo experiments comprising 100 trials were used to estimate statistical properties

of the estimates.
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4.4.2 Parameter Estimation: TV-BJ Model Structure

Algorithm 1 was then used to estimated the discrete-time, TV model parameters

and the noise free-output. The noise model was never estimated; it was assumed that

Cpq´1q “ Dpq´1q “ 1 for both types of noise.

Tchebychev polynomials were selected as basis functions because: 1) the polyno-

mial of order 0 is a constant term equal to unity, immediately satisfying the condition

imposed to the basis functions (see Section 4.2.1), and 2) their variance is finite in

their support, which guarantees that the inverse operation required for parameter
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estimation (see eq. (4.6)) will be numerically stable. Tchebychev polynomials of

order 0 to 9 were used to represent the three TV parameters resulting a total of 27

parameters to estimate. The number of basis was selected as the minimum order

necessary to describe the true TV parameters with a variance accounted for of at

least 99%.

4.4.3 Parameter Estimation: TV-ARX Model Structure

For comparison purposes, the TV compliance dynamics were also estimated

using a well known, non-iterative, Ordinary Least Squares (OLS) algorithm that

estimates the TV parameters of an ARX model of the form [170]

zpkq “
b0pkq p1 ` 2q´1 ` q´2q

1 ` a1pkqq´1 ` a2pkqq´2
τpkq

`
1

1 ` a1pkqq´1 ` a2pkqq´2
epkq

This structure assumes that the additive noise, epkq, is a white signal filtered by a

system with the same poles as the process plant.

4.4.4 Validation

The predictive ability of model estimates was quantified in terms of the Vari-

ance Accounted For (VAF) between the estimated and simulated position for the

validation run as:

%V AF “
1

M

Mÿ

m“1

¨
˚̊
˚̊
˝
1 ´

Nÿ

k“1

´
θmpkq ´ θ̂mpkq

¯2

Nÿ

k“1

pθmpkqq2

˛
‹‹‹‹‚

ˆ 100%,
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where θmpkq is the noise-free simulated position for trial m and θ̂pkq is the noise-free

predicted position; M is the number of gait cycles and N the number of samples per

cycle.

The quality of the parameter estimates was measured in terms of their bias and

random errors with respect to the mean estimate in the Monte Carlo simulations,

defined as

¯̂
bipkq “

1

100

100ÿ

j“1

b̂ipkq,

where b̂ipkq is the parameter estimated at each Monte Carlo trial. The bias error at

each time k was computed as

ǫbipkq “ abs
´
bipkq ´

¯̂
bipkq

¯
,

where bipkq is the true parameter value, and the random error was measured as the

standard deviation of the parameter estimates as

σbipkq “

«
1

100

100ÿ

j“1

´
b̂ipkq ´

¯̂
bipkq

¯2

ff1{2

.

Both ǫbipkq and σbipkq are vectors with N samples.

4.4.5 Intrinsic Joint Compliance Parameters

One of the most important aspects of any identification procedure is its the abil-

ity to retrieve the physiologically relevant, continuous-time, intrinsic joint compliance

parameters: elasticity (Kpkq), viscosity (Bpkq) and inertia (I).
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The relation between the estimated, discrete-time, model parameters and the

continuous-time, intrinsic joint compliance parameters is given by [65]

Kpkq “
1

4

ˆ
1 ` a1pkq ` a2pkqq

b0pkq

˙
, (4.16a)

Bpkq “
Ts

4

ˆ
1 ´ a2pkq

b0pkq

˙
, (4.16b)

Ipkq “
T 2
s

16

ˆ
1 ´ a1pkq ` a2pkqq

b0pkq

˙
, (4.16c)

where Ts is the sampling time. It should be noted that the estimated inertia is also

TV, however this is an effect created by the discretization step.

4.4.6 Gait Cycle Length and Ensemble Normalization

So far it has been assumed that all the gait cycles in the ensemble have the same

length, as this is a requirement of the identification algorithm. However, in practice

this is hardly true, as even under controlled experimental settings there is always

some degree of variability in the stride length [110]. For an ensemble of gait cycles,

this variability can be quantified by the distortion ratio, given by

Distortion Ratio “

«
1

M

Mÿ

m“1

ˇ̌
ˇ̌L̄ ´ Lm

L̄

ˇ̌
ˇ̌
ff

ˆ 100%,

where L̄ is the average length of the ensemble and Lm the length of each individual

cycle. Typically, experiments with healthy subjects present a distortion ratio between

2% and 4% [110, 171]; this value is expected to be larger for patients.

Once the ensemble of gait cycles with different lengths were recorded, they

were normalized such that Lm “ L̄ “ 1.125s using the linear time-scaling process

described by D. A. Winter [180].
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4.5 Results

We first compared the performance of the TV-ARX and TV-BJ methods when

used with data records containing 20 cycles.

4.5.1 TV-ARX Model
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Figure 4–6: TV parameters estimated for the TV-ARX model with white-Gaussian
(left column) and experimentally-based (right column) noise. True (red) and esti-
mated (blue) discrete-time, TV parameters for the 100 Monte Carlo simulations.

White-Gaussian noise

The TV-ARX method produced models that predicted the output well with

%VAF that were always greater that 99.5%. However, the parameter estimates were
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heavily biased as the left column of Fig.4–6 demonstrates. The red lines show the

time course of the true model parameters while the blue lines show the estimates

from each one of the Monte Carlo trials. It is evident that the time courses of the

true and estimated TV parameters were very different in all trials.

Experimentally-Based Noise

For this type of noise TV-ARXmethod produced a range of models with different

predictions abilities. The mean prediction VAF was 94.6% but for some of the Monte

Carlo trials it was as low as 87%. The right column of Fig. 4–6 demonstrates that

the estimates parameters were very different from the true values.

Fig. 4–7 summarizes the accuracy of the parameter estimates for the two types

of noise. In all cases, the TV-ARX estimates had bias errors that were similar in

magnitude to the true parameters. The random error was low for white noise but

much larger for the experimentally-based noise.
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Figure 4–7: Bias (left column) and random (right column) errors for 100 Monte
Carlo simulations with the TV-ARX model with white-Gaussian (green lines) and
experimentally-based (brown lines) noise. b0: Top row, a1: Middle row, and a2:
bottom row.

4.5.2 TV-BJ Model

White-Gaussian noise

The TV-BJ algorithm generated models which predicted the noise free output

almost perfectly; the prediction VAF was always greater than 99.9%. Furthermore

the left column of Fig. 4–8 demonstrates that the estimated parameters tracked the

true values closely with the errors equally distributed around the true values.
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Experimentally-Based Noise

The TV-BJ models predicted the noise free output very accurately; the predic-

tion VAF was always greater than 99.9%. The right column of Fig. 4–8 demonstrates

that, as happened in the white noise case, the TV parameters were estimated accu-

rately with errors equally distributed around the true values.

Figure 4–8: TV parameters estimated for the TV-BJ model with white-Gaussian (left
column) and experimentally-based (right column) noise. True (red) and estimated
(blue) discrete-time, TV parameters for the 100 Monte Carlo simulations.

Fig. 4–9 summarize the accuracy of the parameter estimates for the different

types of noise. The bias error obtained with the TV-BJ model were very small
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in all the different cases. Furthermore, the bias and random errors obtained with

both noise types were very similar, indicating that the estimation results are not

significantly influenced by the noise characteristics even though the noise model was

not estimated.
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Figure 4–9: Bias (left column) and random (right column) errors for 100 Monte
Carlo simulations with the TV-BJ model with white-Gaussian (green lines) and
experimentally-based (brown lines) noise. b0: Top row, a1: Middle row, and a2:
bottom row.

Table 4–1 summarizes the results; it shows the average over one cycle of the bias

and random errors for each parameter, and the % V AF obtained in the Monte Carlo
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simulations. The % V AF was close to 100% for TV-BJ estimates with both types

of noise and TV-ARX for white noise. However, for experimentally-based noise, the

% V AF obtained with the TV-ARX decreased to 94.6%. For all the parameters

and both types of noise, the bias error of TV-BJ results were more than an order

of magnitude smaller than the TV-ARX estimates. In contrast, the random errors

depend strongly on the type of noise. For white noise, TV-ARX results showed the

smallest random error and those for the TV-BJ results were only slightly larger.

However, for experimentally-based noise, the TV-ARX results presented very large

random errors while the TV-BJ results were much smaller and only slightly larger

than those observed with white noise.

Table 4–1: Mean of the bias and random errors, and %V AF for the different model
structures and noise types.

TV-ARX TV-BJ
White Exp-Based White Exp-Based

% V AF 99.6 94.6 99.9 99.9

ǫb0 ˆ 10´4 5.6 3.9 0.1 0.2
ǫa1 ˆ 10´2 51.2 42.3 1.4 1.3
ǫa2 ˆ 10´2 41.1 34.5 1.2 1.2

σb0 ˆ 10´5 4.9 28.3 5.1 6.8
σa1 ˆ 10´2 3.6 29.8 5.9 8.2
σa2 ˆ 10´2 3.1 24.4 4.9 7.1

4.5.3 Estimation of Intrinsic Joint Compliance Parameters

The results presented in Figs. 4–6 and 4–8 for the experimentally-based noise

were used with eq. 4.16a-4.16c to estimate the TV intrinsic joint compliance param-

eters; these results are summarized in Fig. 4–10 for the TV-ARX (left column) and
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TV-BJ (right column) model structures. The range of each panel was adjusted to

properly display the data and facilitate the comparison of the results.

The right column of Fig. 4–10 demonstrates that the results obtained with the

TV-ARX algorithm were very variable. The estimated elasticity (K) and viscosity

(B) were close to the true value for a few of the Monte Carlo trials but very different

for others. On the other hand, the inertia (I) was always biased.

The left column of Fig. 4–10 demonstrates that the estimated parameters with

the TV-BJ algorithm tracked the true values closely with small errors located around

the areas that presented large changes.
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Figure 4–10: TV, intrinsic joint compliance parameters estimated with the the TV-
ARX (left column) and TV-BJ (right column) model structures. Results were ob-
tained only for experimentally-based noise. True (red) and estimated (blue) param-
eters for the 100 Monte Carlo simulations. The range of each panel was adjusted to
properly display the results.

4.5.4 Effect of the Number of Trials

To examine the effect of the number of trials on the parameters estimates, the

simulation and identification procedures were repeated using different record lengths.

Only experimentally-based noise was used since it represents the biggest challenge

to the identification algorithm.
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Fig. 4–11 shows the bias and random errors for each parameters as a function

of the number of trials. To facilitate the comparison between cases, the bias and

random error, which are time sequences with N samples, are presented as box-plots.

The median of the signal is presented with a red line, the extremes of the blue box

indicate the 25th and 75th percentiles, respectively. The black lines extend to cover

the data points not considered outliers and the outliers are plotted using red crosses.
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A minimum of five cycles of data were required to obtain reliable results, fewer

cycles produced unstable models for some of the Monte Carlo trials. The bias error

and random error decreased progressively as the number of cycles increased. How-

ever, increasing from 20 to 40 cycles did not show significant reduction in the bias

error but there was a noticeable decrease in the parameters variability. The %VAF

was similar to that obtained with 20 cycles even with 5 trials.

4.5.5 Effect of Ensemble Normalization

Finally, to examine the effect that the time normalization has on the param-

eters estimates, the simulation and identification procedures were repeated using

ensembles of 20 gait cycles with different length. For this, the length of each cycle

was drawn from a Gaussian distribution with mean 1.125s and variance adjusted to

obtain distortion ratio between 0% and 9%; for a distortion ratio of 9% the cycles

length varied between 0.9s and 1.35s. Once the length of each cycle was defined, the

joint compliance parameters of Fig. 4–3 were time-scaled to fit the selected dura-

tion of each cycle. Afterwards, the parameters were concatenated and the intrinsic

joint compliance model was simulated. Experimentally-based noise was added to the

simulated output and data was divided into individual cycles.

Each cycle of input and output data was normalized to the average length of

the ensemble using a linear time-scaling process [180]; the normalized data was used

for parameter estimation.

Table 4–2 presents the results obtained for different distortion ratios; the TV-

ARX results with a distortion ratio of 0% are also included for comparison. These

results indicate that the time-normalization process does not severely affects the
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Table 4–2: Mean of the bias and random errors, and %V AF as a function of distortion
ratio for the different model structures and Experimentally-bases noise.

Distortion Ratio
0% 3% 5% 7% 9%

TV-ARX TV-BJ TV-BJ

% V AF 94.6 99.9 99.9 99.9 99.8 99.6
ǫb0 ˆ 10´4 3.9 0.2 0.3 0.3 0.4 0.4
ǫa1 ˆ 10´2 42.3 1.3 3.7 3.3 4.8 6.2
ǫa2 ˆ 10´2 34.5 1.2 3.2 3.2 4.2 5.3

σb0 ˆ 10´5 28.3 6.8 10.6 12.2 13.6 13.7
σa1 ˆ 10´2 29.8 8.2 13.0 13.3 14.7 15.5
σa2 ˆ 10´2 24.4 7.1 11.2 11.9 12.6 13.2

%V AF . In contrast, it has a negative effect in both the bias and random errors for

all the estimated parameters and that this effect increases with the distortion ratio;

a five fold increase in the bias error was observed in the worst case scenario (ǫa1).

However, even for a distortion ratio of 9% the mean of the bias and random errors

obtain with the TV-BJ algorithm were significantly smaller than those obtained with

the TV-ARX algorithm for a distortion ratio of 0%.

4.6 Discussion

This paper presents a method for the identification of time-varying intrinsic joint

compliance from periodic data segments of short duration using a predefined set of

basis functions. This technique estimates the TV parameters of a discrete-time, TV-

BJ model and is capable of tracking large, rapid changes in dynamics with no a priori

assumption about the noise model dynamics.

4.6.1 Original contributions

This study makes three main contributions:
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TV, Intrinsic Joint Compliance

First, this paper presents a new method to quantify intrinsic joint compliance

during walking from as few as 5 gait cycles. There is an increased interest in es-

timating joint compliance during walking [109, 110, 125] as this might help in the

design and control of biomimetic prostheses and orthoses [18], the characterization

of neuromuscular diseases and lesions [181], and the improvement of electrical stim-

ulation systems aimed at improving or restoring the gait cycle by providing a better

description of the relation between joint torque and position [182, 18]. However,

the system identification techniques used to date require many (more than 100) tri-

als and assume that: i) the noise added to the output is white and ii) the model

parameters remain unchanged during short segments (approximately 100 ms). Our

novel algorithm improves over those methods by relaxing these limitations, providing

accurate estimates of the intrinsic joint compliance during the gait cycle with short

data records.

Our simulation study showed that even with high levels of experimentally-based

noise the algorithm only requires 5 gait cycles to yield unbiased estimates of the

model parameters; these good results are robust to the time-normalization required

when the cycles in the ensemble have different lengths. In addition, our algorithm

estimates a new value for the parameters at each sampling interval, effectively com-

puting the parameters time course instead of averages over short time windows. This

facilitates the analysis of the parameters variation with time and permits the tem-

poral localization of large changes in the system dynamics. Therefore, our algorithm

provides better estimates of joint compliance with less data than previous methods.

94



Modeling of Biomedical Systems

Second, we demonstrated that the Box-Jenkins model structure is appropriate

to describe the intrinsic joint compliance, a TV, biomedical system with complex,

non-white additive noise. In general, this model structure can be useful to model

any biological system with (approximate) linear dynamics. We showed that selecting

simpler model structures, that do not include an independent parametrization of the

process and noise plants, to describe biomedical systems can lead to a models with

good predictive ability but with biased parameters estimates, which might hamper

any possible physiological insight that can be gain from this analysis.

Consequently, the methodology presented here can be applied to model the

input-output relation of any biomedical system whose TV dynamics can be well

described by a linear system.

Use of Experimentally-Based Noise for Validation of Identification
Algorithms

Third, this study makes use of two types of noise for the validation of the pro-

posed algorithm: (i) white-Gaussian noise, and (ii) experimentally-based noise. Our

simulation results demonstrated that using only white-Gaussian noise to validate the

identification algorithm might falsely overestimate the estimator accuracy. This was

observed with the TV-ARX algorithm; the white-Gaussian noise results provided

a %VAF close to 100% for all the trials, indicating that the parameters might be

correctly estimated. However, the experimentally-based noise results presented a sig-

nificantly lower %VAF, concurrent with the biased parameter estimates. In contrast,

results obtained with the TV-BJ algorithm were equally good for both types of noise,

indicating that the estimator should provide accurate results with experimental data.
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Ideally, the simulation study should have used experimental noise recorded dur-

ing walking. Unfortunately, we do not have access to such records and are unaware

of any publicly available data base. Nevertheless, we believe that the experimentally-

based noise used in this simulations provides a good test for the identification al-

gorithm because: i) the experimentally-based noise is a complex noise signal based

on torque measurements whose frequency content is similar to that of the system of

interest, ii) the signal contains a physiological, colored-noise and an instrumental,

white-noise components, which is characteristic of the noise encountered in physio-

logical system, iii) the signal properties change as a function of the gait cycle, which is

expected from the experimental noise measured during walking, and iv) the selected

SNR (10dB) is much larger than that expected experimentally.

4.6.2 Limitations

The results presented here were obtained under the assumption that reflex con-

tributions are small and can be ignored; though this assumption seems to be valid

for healthy subjects during walking [109, 110], it might not hold for patients suf-

fering of spasticity, which present exaggerated reflex responses [17]. In that case,

the changes in position due to the torque perturbations will excite the stretch reflex

mechanism, which will produce an additional joint torque that will result in changes

of joint position. Hence, the system will behave as a closed-loop system with the

feedforward and feedback pathways composed by the intrinsic compliance and reflex

stiffness respectively. The algorithm described here cannot be used in such situations

to estimated the intrinsic joint compliance as it requires knowledge of the torque per-

turbation and the feedback signal. However, it is possible to use this algorithm in
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combination with a method that we recently introduced for the identification of TV

stretch reflex dynamics [179], along with a multi-step method for the identification of

closed-loop systems [183, 101] to estimate both the intrinsic and reflex components

of joint compliance.

The algorithm assumes that the movement is periodic and takes advantage of

this to overcome the lack of initial conditions. There different sources or experimental

errors that may affect the periodicity of the movement and induce errors in the

parameters estimates. For example, there might be a poor detection of the beginning

of the cycle, causing the trials in the ensemble to be out of phase, in addition, each

cycle might have a slightly different duration, generating an ensemble with elements

of varying length. We showed that the algorithm still provides unbiased estimates

when the movements are not perfectly periodic and there is large variability in the

cycle length. However, these experimental errors should be reduced as much as

possible to minimize the estimation errors. In addition, the algorithm can still be

used with minimum changes in situations where the movement is non-periodic but

the time-varying behavior is the same in each trial of the ensemble (e.g. a ramp-and-

hold movement). However, the initial conditions will be unknown in this situation

and this will have a negative effect in the parameter estimates.

Finally, in this study, the continuous-time, TV, differential model of joint com-

pliance was approximated by a set of (frozen) discrete-time equations at each sample

interval by assuming a zero-order-hold discretization in the model parameters (i.e, it

is assumed that the parameter value is constant for the duration of the sample inter-

val). Several other approaches for the discretization of TV systems exist and their
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advantages and drawbacks were analyzed in [184]. He concluded that the zero-order-

hold discretization is adequate to represent TV systems when the parameters values

are instantaneous function of time (i.e, the current parameters value only depends

on the current time, not on past or future time values), when this assumption is

violated, other discretization techniques should be used. The excellent results of our

simulation study demonstrate that the zero-holder-hold approximation is adequate

for the continuous-time model of joint compliance.
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Chapter 4 introduced a new method for the estimation of linear, time-varying,

transfer function models. This model structure provides parsimonious representation

of system dynamics; but requires the model order to be defined a priori, which can

be difficult for complex, biological systems. An alternative is to describe the sys-

tems dynamics using a non-parametric model, which requires no information about

the system order. However, current algorithms for estimation of time-varying, non-

parametric model parameters require hundreds of input-output data segments pre-

senting the same time-varying behavior. These large data set are very difficult to

obtain in practice, which severely limits the applications of these algorithms. This

chapter develops and validates a new algorithm for the identification of linear, time-

varying, non-parametric model parameters using only a few periodic, input-output

data segments of short duration. The new method represents a significant improve-

ment over previous algorithms as the reduction in data requirements implies shorter

experiments which makes it much easier to acquire enough trials with the same TV
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behavior. This algorithm was used to estimate the fast, large changes in intrinsic

ankle stiffness, during an imposed walking movements. Results were obtained with

as few as 20 gait cycles, while previous studies that used classical algorithms require

more than 600 gait cycles for parameter estimation.

100



Abstract

The mechanical properties of a joint, determined by the intrinsic and reflex

mechanisms, play a vital role in the control of posture and movement. However,

under passive conditions, the intrinsic mechanisms, defined by the dynamic intrinsic

stiffness, play the dominant role. Passive, intrinsic dynamic stiffness defines the re-

lation between joint position and torque; for small variations about a fixed operating

point, it can be modeled as a linear system. However, the intrinsic stiffness param-

eters depend strongly on the operating point. Thus, for functional activities, where

position and torque undergo large, rapid changes, the model parameters will appear

to be Time-Varying (TV). This paper introduces a novel, non-parametric, system

identification method to estimate TV intrinsic dynamic stiffness. The algorithm

combines ensemble and deterministic approaches to estimate TV parameters from

periodic, input-output data segments of short duration. In this study, the passive

intrinsic stiffness of four subjects was estimated during imposed walking movements.

The identified TV models predicted the measured output very well, accounting for

94 ˘ 2 % of the measured torque variance. The estimated visco-elastic properties

of the ankle changed greatly through the gait cycle; passive joint stiffness increased

at least four fold between heel-strike and terminal stance phase, and then sharply

decreased from pre-swing to swing phase. These results suggest that the modulation

in passive, intrinsic mechanisms provides higher stability of the ankle joint during

the weight bearing portion of the gait cycle.
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5.1 Introduction

The human ankle produces most of the mechanical power generated during the

stance phase of walking. The ankle plantarflexors contribute as much as half of the

mechanical power needed for walking, help to mobilize the leg during the swing phase,

and promote the ankle flexion necessary for toe-off [185]. Moreover, ankle dorsiflexors

help to absorb impact forces during heel-strike which might otherwise destabilize the

body [186, 187]. Thus, the ankle joint is critical for propulsion, shock absorption and

balance during walking so that understanding its mechanical properties is pivotal for

the development of ankle–foot prostheses and orthoses, and to gain better insight

into neuromuscular diseases that affect function.

The joint mechanical properties may be defined by the dynamic joint stiffness,

which relates unexpected joint position disturbances to the involuntary torque re-

sponse [12]. It is composed of intrinsic and stretch reflex components, which for

small perturbations around a fix operating point can be represented by a linear and

Hammerstein systems acting in parallel [12, 188, 1].

Early studies in the identification of joint dynamic stiffness from position and

torque data focused on stationary, non-moving conditions; they showed that the

model parameters depend strongly on the operating point, defined by joint position,

torque and other factors [70, 52, 189, 11, 64]. Therefore, when the joint position and

torque vary significantly with time, as during walking, stiffness model parameters will

be time-varying (TV). However, a literature review revealed relatively few studies

that attempted to characterize ankle dynamic stiffness during TV conditions [106,
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107, 112, 103, 113, 105, 110, 109, 18]. A major finding is that the results from static

experiments cannot be interpolated to describe the behavior during TV situations.

With the advent of powered ankle prostheses and orthoses there is now a neces-

sity of characterizing the intrinsic dynamic ankle stiffness throughout the gait cycle

so that biomimetic devices can be designed. Recent studies have introduced novel

methodologies to do so [18, 110, 109]. However, these studies demonstrate some

important analytical challenges that this research field is currently facing. Fist, the

ensemble based approach used in these studies for TV identification requires hun-

dreds of input-output trials showing the same TV behavior to accurately estimate the

parameters [106, 108]. This is time consuming and difficult to achieve experimentally,

which greatly limits the application of these methods to pathological subjects. Sec-

ond, these studies estimate the average model parameters over short time windows,

which may produce large estimation errors when parameters change rapidly.

This paper deals with the identification of intrinsic, ankle dynamic stiffness

during passive, imposed movement. These movements comprised the sum of the

ankle trajectory during walking and small, high-frequency position perturbations.

A novel TV identification method, that estimates the model TV parameters from

periodic, input-output data segments, was developed and used to estimate the TV,

intrinsic ankle dynamic stiffness throughout the imposed walking movement.

This paper is organized as follows: Section 5.2 presents the experimental pro-

tocol and describes the measured data. Section 5.3 introduces the model used to

describe the TV, intrinsic, dynamic ankle stiffness and the system identification al-

gorithm. Section 5.4 presents estimated passive, TV, dynamic ankle stiffness for
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the four subjects and compares these results with those obtained in stationary ex-

periments. Finally, Section 5.5 discusses the results and compares them with other

studies. Possible applications of this method are also presented and the algorithm’s

limitations are discussed.

5.2 Experimental Methods

5.2.1 Subjects

Four healthy subjects (one female), aged 25 to 31 years, participated in this

study. The experimental procedures were approved by the McGill University Re-

search Ethics Office and subjects gave informed consent.

5.2.2 Experimental protocol

Subjects lay supine with their left foot attached to the pedal of an electrohy-

draulic actuator operating as a position servo by means of a custom made fiberglass

boot so that ankle movement was restricted to plantarflexion and dorsiflexion.

Ankle position, torque, and surface EMG from the medial and lateral gastroc-

nemius (GM and GL), soleus (SOL) and tibialis anterior (TA) were filtered at 400Hz

by an anti-aliasing filter and sampled at 1kHz by a 16-bit A/D converter. Surface

EMG electrodes were placed according to the SENIAM recommendations [190].

The subjects’ ankle angle was moved to the zero position (i.e, a right angle be-

tween the foot and shank) and held there for at least one minute. Then, a movement

consisting of 50 gait cycles, each lasting 1s, summed with a Pseudo Random Binary

Sequence (PRBS) perturbation whose amplitude and switching rate were 0.035 rad

and 150 ms, was applied. The subject was instructed to remain relaxed and not

react to the movement, this was monitored using the EMG signals. The experiment

104



was repeated 3 times, each with a new perturbation signal, to obtain a total of 150

perturbed gait cycles. The red lines in Fig. 5–1 show the ankle position and torque

for one gait cycle; the blue lines show the average over the 150 cycles.

A stationary experiment was performed with one subject. In this experiment,

the imposed ankle movement comprised only of the PRBS perturbation. Trials last-

ing 30s were applied at joint positions from -0.2 rad to +0.2 rad with increments of

0.05 rad.
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Figure 5–1: A. Ankle trajectory and B. Torque. Red lines show a typical single trials
and blue lines show average over 150 cycles. The vertical lines indicate the phases
of the gait cycle starting from heel-strike: early stance (ESP), mid-stance (MSP),
terminal stance (TSP), pre-swing (PSP) and swing phase (SWP).
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5.3 Analytical Methods

5.3.1 Time-varying, intrinsic, dynamic joint stiffness

In general, the relation between joint position and torque can be formulated as

[106]:

τptkq “ f
´
θptkq, 9θptkq, tk

¯
` I :θptkq, (5.1)

where fpθptkq, 9θptkq, tkq is a TV, nonlinear function that describes the net moment

due to the viscoelastic properties of the muscle and connective tissue, and stretch

reflex feedback; and I is the joint inertia. However, stretch reflexes are usually small

for relaxed muscles so that the relation between joint position and torque will be

approximated only by its intrinsic component [189, 11].

To estimate joint dynamic stiffness during a large movement small position per-

turbations must be applied on top of the joint trajectory [75]. Thus, the overall ankle

movement is given by:

θptkq “ θ0ptkq ` θpptkq,

where θ0ptkq is the joint trajectory and τpptkq the small position perturbations. We

will assume that the overall response is given by:

T ptkq “ τ0ptkq ` τpptkq ` ξptkq.

Which corresponds to the linear combination of the individual responses to the large

joint displacements (τ0ptkq), the small perturbations (τpptkq), and an additional term

that represent the non-linear effects of applying both movements together (ξptkq).
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This model differs from previously used models [70, 20, 106, 191, 110, 109] in

that it introduces the additional torque component ξptkq.

The large joint trajectory and the produced torque, θ0ptkq and τ0ptkq, can be

estimated by averaging the cycles because θpptkq and is zero mean. In contrast, the

small, random position perturbation signal is a persistently exciting input and the

intrinsic torque that it generates can be well approximated by a linear, dynamic

model [188, 1, 12]. The intrinsic, dynamic joint stiffness can then be described by

the TV, non-parametric model [110, 107, 112]

τpptkq “
k“Lÿ

k“´L

hpk, tkqθpptk ´ kq, (5.2)

where L is the system memory and hpk, tq are elements of a TV Impulse Response

Function (IRF).

The torque signal ξptkq depends on nonlinear interactions between the joint

trajectory and the small position perturbations. In general, it is expected that this

component will be non-zero mean during the gait cycle. Therefore, estimates of

intrinsic stiffness will be biased unless ξptkq is removed [136]. This component will

be described using cubic B-splines with nodes uniformly distributed across the gait

cycle [192], that is:

ξptkq «
Mÿ

i“0

βiBi ptkq , (5.3)

where βi are weights and Biptkq the cubic B-splines shown in Fig. 5–2.

5.3.2 Parametrization of TV stiffness model

This section describes the parametrization of the TV, intrinsic, dynamic joint

stiffness model. For this, the elements of the TV-IRF in (5.2) are approximated by
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a linear combination of basis functions as

h pk, tkq “
Qÿ

m“0

γk,mBm ptkq , (5.4)

where γk,i are unknown weights andBmptkq are cubic B-splines. Using this parametriza-

tion, the input-output becomes

τpptkq “
Lÿ

k“´L

Qÿ

m“0

γk,mθp,mptk ´ kq, (5.5)

where

θp,mptk ´ kq “ Bm ptkq θpptk ´ kq.

This procedure transforms the TV identification problem into a time-invariant

(TI) problem having additional parameters.

The TI system can be expressed in vector format as the data equation for N

samples

τp “ Θpγ, (5.6)

where

τp “ rτpp1q, ¨ ¨ ¨ τppNqsT ,

γ “ rγ´L,0, ¨ ¨ ¨ γ´L,Q ¨ ¨ ¨ γL,0, ¨ ¨ ¨ γL,QsT ,

and Θp is

Θp “

»
————–

θp,0p1 ` Lq ¨ ¨ ¨ θp,Qp1 ` Lq ¨ ¨ ¨ θp,0p1q ¨ ¨ ¨ θp,Qp1q ¨ ¨ ¨ θp,0p1 ´ Lq ¨ ¨ ¨ θp,Qp1 ´ Lq

...
. . .

...
. . .

...
. . .

...
. . .

...
. . .

. . .

θp,0pN ` Lq ¨ ¨ ¨ θp,QpN ` Lq ¨ ¨ ¨ θp,0pNq ¨ ¨ ¨ θp,QpNq ¨ ¨ ¨ θp,0pN ´ Lq ¨ ¨ ¨ θp,QpN ´ Lq

fi
ffiffiffiffifl
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Figure 5–2: Cubic-Splines basis functions used to represent the time-varying param-
eters as a function of gait cycle.

The parameter set γ, which defines the TV, IRF elements, can be estimated

using this equation and the measured joint position and torque. However, as the

duration of the gait cycle is short and changes in the model parameters large and

fast, estimating TV, joint intrinsic stiffness from a single gait cycle will provide

unreliable estimates. This limitation can be addressed by using an ensemble of gait

cycles, each showing the same TV behavior, to refine the parameter estimates.
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Using this parametrization, the relation between an ensemble of joint position

perturbations and the resulting torques for different gait cycles can be expressed as

»
————–

τpt1u

...

τptnu

fi
ffiffiffiffifl

“

»
————–

Θpt1u

...

Θptnu

fi
ffiffiffiffifl
γ, (5.7)

where n is the number of gait cycles, τptju is a rNˆ1s vector, Θptju is a rNˆp2L`1qs

matrix, and γ is a rp2L ` 1q ˆ 1s vector.

Parameter Estimation

Eq. (5.7) is linear in the parameters so we implemented the well known Bayesian,

linear regression algorithm known as the relevance vector machine in Matlab (Math-

works) and used it for parameter estimation. This is an iterative algorithm that as-

sumes a non-restrictive, Gaussian prior for each parameter. The prior is then updated

using the measured data and an Expectation-Maximization algorithm [147, 143].

5.3.3 Identification of passive, dynamic ankle stiffness during an imposed
walking movement

Measured joint position and torque data were divided in individual cycles, each

starting at heel-strike. The average position and torque signals, θ0ptkq and τ0ptkq,

were computed as the ensemble average and removed from the measured data to

obtain θpptkq and τptkq; the blue lines in Fig. 5–3 present these signals for one gait

cycle. The acceleration produced by the perturbations was computed and the inertial

torque due to the boot and electrohydraulic actuator was computed and subtracted
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from the torque. After these steps, the torque signal for the n gait cycles becomes

»
————–

τ t1u

...

τ tnu

fi
ffiffiffiffifl

“

»
————–

τpt1u

...

τptnu

fi
ffiffiffiffifl

`

»
————–

ξt1u

...

ξtnu

fi
ffiffiffiffifl
, (5.8)

where

τptju “ rτpp1qtju, ¨ ¨ ¨ τppNqtjusT ,

ξtju “ rξp1qtju, ¨ ¨ ¨ ξpNqtjusT ,

are the perturbation and additional torques for the j-th cycle. Inserting (5.7) into

(5.8) gives »
————–

τ t1u

...

τ tnu

fi
ffiffiffiffifl

“

»
————–

Θpt1u

...

Θptnu

fi
ffiffiffiffifl
γ `

»
————–

ξt1u

...

ξtnu

fi
ffiffiffiffifl
. (5.9)

Next, the additional torque , ξtju, at each cycle can be expressed as

ξtju “ Bβtju, (5.10)

with

βtju “ rβ0,j, ¨ ¨ ¨ βM,js
T
,

B “

»
————–

B0p1q . . . BMp1q

...
. . .

...

B0pNq . . . BMpNq

fi
ffiffiffiffifl
,
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The objective now is to estimates the parameters that represent the TV, joint

dynamic stiffness (γ) and the additional torque (βtju) at each cycle. Assuming that

the joint stiffness parameters are periodic, their time-courses for one single period can

be estimated using all the data. This is achieved by using the same basis functions

to represent the TV parameters for all the cycles as expressed in 5.7. Conversely,

the additional torque, βtju, will be different at each cycle and so the parameter set

used to represent this signal must be estimated for each cycle.

The identification algorithm estimated the two parameter sets sequentially. It

start by an initial estimate of pξtju at each cycle. Then, this estimated torque is

subtracted from the measured torque before finding an estimate of pγ and computing

the torque pτpptkq for each gait cycle. The estimates of the intrinsic torque are then

removed from the measured toque and the estimates of pξtju are updated. This

process is repeated until convergence. This iterative algorithm is described in detail

in Algorithm 2.
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Algorithm 2 Identification of TV, intrinsic joint dynamic stiffness

1. Measure the perturbed and un-perturbed torque and position signals. Compute
τptkq and θpptkq.
2. Using the set of basis function compute the matrix θp using the recorded signal.
3. Divide the data into each gait cycle to obtain an ensemble of trials as

»
—–
τt1u
...

τtnu

fi
ffifl , and

»
—–
Θpt1u

...

Θptnu

fi
ffifl .

4. Set a counter i “ 0. Define a set of n vectors pτpptkq “ 0.
5. Find an estimate of the additional torque as

rξitju “ τtju ´ pτpitju

where j represent the trial number.
6. Use the estimated residual voluntary torque to identify the elements of (7.9) as

pβitju “ Bz rξitju,

where the ’z’ represents the relevance vector machine algorithm.

7. Update the residual voluntary torque for each trial as

pξtju “ Bβ̂tju,

and remove it from the torque to generate a new signal as

Ăτpi
tju “ τtju ´ pξjtju.

8. Use the ensemble of Ăτpi
, θpptkq signals, and the basis functions to estimate γ as

pγi “

»
—–
Θpt1u

...

Θptnu

fi
ffifl

J
»
—–

Ăτpi
t1u
...

Ăτpi
tnu

fi
ffifl

and use it to compute the perturbation torque at each trial as

xτpi
tju “ Θptjupγi

9. Define a predicted torque for each trial as

pτ itju “ xτpi
tju ` pξtju

and compute the VAF between the predicted and measured torques as

V AF itju “ max

«
0,

˜
1 ´

ř `
τtju ´ pτ itju

˘2
ř

pτ itjuq
2

¸ff
,

and find the mean VAF of the ensemble as

V AF piq “
1

n

nÿ

j“1

`
V AF itju

˘
.

10. If there is a significant difference between V AF piq and V AF pi ´ 1q then set i “ i ` 1 and go
to 5, else finish.



The memory of the IRF must be specifies a priori, here it was selected to be

40 ms, which coincides with the latency of the ankle stretch reflex response [12].

This value was selected so that the stretch reflex mechanisms do not influence the

estimated parameters.

5.3.4 Analysis of results

The algorithm estimates pγ, pβtju, and the predicted torques, pτpptkq and pξptkq

for each cycle. The parameter set pγ and the B-splines basis functions can be used

to estimate the TV-IRF as expressed in (5.4). Once the TV-IRF are estimated,

the system time-frequency response can be calculated [136] and the DC gain or DC

stiffness, and bandwidth (the frequency at which the system gain is 3dB larger than

the DC gain) as a function of time can be measured.

5.4 Results

Next we present the results for one typical subject followed by the group results.

5.4.1 Single subject results

The TV, dynamic ankle stiffness was well characterized by a non-parametric

model with a memory of 40 ms (L “ 4); the average VAF for the 130 validation

cycles was 96.3 ˘ 1.5%.

Fig. 5–3 demonstrates the good agreement between measured and predicted

torques, shown in Panel B with blue a purple lines for a typical validation trial. The

predicted pξptkq torque, shown in panel D, was small compared with the predicted

intrinsic toque, shown in panel C.
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Figure 5–3: Results for a typical validation trial as a function of % of gait cycle. A.
Perturbation position input, B. Measured (blue) and predicted (purple) perturbation
torque, C. Estimated intrinsic torque, C. Estimated additional torque.

Fig. 5–4A shows the residuals obtained for three gait cycles, this signal is zero-

mean for all cycles and small compared with the measured torque. It is mainly

composed of high-frequency oscillations, which are likely originated from un-modeled
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inertial response. Fig. 5–4B presents the torque pξptkq predicted for the same three cy-

cles, this signal is not only non-zero mean throughout the cycle but shows a different

behavior at each cycle.

Figure 5–4: A. Residuals obtained for three gait cycles. B. pξptkq predicted for three
gait cycles.

Fig. 5–5, presents the time-frequency response of the TV, intrinsic stiffness

model. It showed a high-pass behavior, classically observed in this system and

changed significantly throughout the gait cycle. Fig. 5–6 characterizes these changes

in terms of DC stiffness and system bandwidth during the gait cycle along with
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the 95% confidence interval, computed by applying a bootstrap analysis with 100

repetitions [193]. Both increased more than four fold during the stance phase, and

then decreased sharply during the pre-swing phase. This drastic change occurred

very rapidly, lasting around 100ms. Both then returned to its value at the beginning

of the cycle and remained relatively constant through the swing phase. The green

dots shown the DC stiffness and bandwidth estimated under stationary conditions at

equivalent joint positions. These values are clearly very different from those observed

during TV conditions.
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Figure 5–5: Time-Frequency response of the intrinsic, dynamic joint stiffness as a
function of gait cycle for one subject.
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Figure 5–6: A. DC stiffness and B. Bandwidth computed during TV (purple line)
and stationary (green dots) conditions. Grey bars indicate 95% confidence interval.

5.4.2 Group results

For all subjects, the TV, dynamic ankle stiffness was well characterized by the

estimated non-parametric model with a memory of 40 ms; the average VAF for the

520 validation trials was 94 ˘ 2%.

Fig. 5–7 presents the frequency response at different phases of the gait cycle for

all subjects. These showed the same general trend in all subjects. In particular, the

gain in the low and middle frequencies (ď 15Hz), corresponding to the viscoelastic

response of the joint, increased steadily from 0% to 40% of the cycle (corresponding
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to the stance phase). Then, it decreased sharply between 40% and 60% of the cycle

(corresponding to the pre-swing and initial swing phases). And finally it increased

slightly and remained constant until the end of the cycle (corresponding to the swing

phase).
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Figure 5–7: Frequency response of intrinsic, dynamic joint stiffness at different phases
of the gait cycle for all subjects.

5.5 Discussion

5.5.1 New identification algorithm

This paper describes a new algorithm for the identification of TV, intrinsic,

dynamic joint stiffness. The method presents two innovations: First, the algorithm

combines the ensemble and deterministic approaches for TV parameter estimation.

This permits the estimation of fast, large changes in intrinsic joint stiffness with

significantly less data than ensemble methods; only 20 trials were needed to track

the changes in joint stiffness through a simulated gait cycle. Previous studies that

used ensemble-only methods required hundreds of trials [109, 110]. This reduction

119



in data requirement translates into much shorter experiments which makes it much

easier to acquire enough trials with the same TV behavior.

The second innovation is that our algorithm estimates a novel torque component,

ξptkq, to account for the non-zeros mean torque that can be produced by nonlinear

interactions between the large joint trajectory and the small perturbations, volun-

tary muscle contractions, and reflex mediated response. Estimating this component

ensures that the residuals produced by the intrinsic dynamic stiffness model will be

zero mean, which guarantees unbiased parameter estimates [136].

On the other hand, the method also inherits the limitations of both the ensem-

ble and deterministic approaches. First, the method requires that all trials in the

ensemble have the same TV behavior. However, the efficiency of the algorithm makes

acquiring the data much less demanding than ensemble-only methods. Secondly, the

method requires periodic movements to estimate initial conditions correctly. This

algorithm can still be used with non-periodic movements; however, if the effects of

the initial conditions are non-negligible then a multistep process must be applied

to estimate them, otherwise, there will be transients at the beginning of the trial

that will corrupt the prediction. The multistep process consists in transforming the

estimated TV model into a TV state-space representation, applying a back-casting

algorithm to estimate the initial conditions, and then transforming the state-space

model into a non-parametric representation [140]. Nevertheless, this procedure re-

quires the knowledge of the model order, which is not always available. Third, quality

of the parameter estimates will depend on selecting a set of basis functions capable of

efficiently describing the TV parameters changes. We used cubic B-splines which are
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well suited for the smoothly changing parameters observed here. However, these ba-

sis functions would not be appropriate for parameters undergoing sharp transitions;

another set of basis functions, such as Haar wavelets, would be more appropriate for

this case. The best choice of type and number of basis functions is an open research

problem. We addressed this in part by using the relevance vector machine for pa-

rameter estimation; this is a regularized identification algorithm that will force the

weights of unnecessary basis functions to zero so they can be discarded.

5.5.2 Passive ankle stiffness throughout the gait cycle

The ankle DC stiffness, increased steadily by three fold from the early to ter-

minal stance phase of the cycle. Next, it decreased by ninefold between the end of

the terminal stance and the pre-swing phase. After the toe is lift off, the stiffness

remained at a constant, low value until the end of the cycle. Even though these

data were acquired from simulated walking experiments, the modulation in stiffness

seem functionally appropriate. The increase in stiffness occurs in the portion of the

cycle when only one leg supports the body. Thus, an increased ankle stiffness, which

increases the joint stability, seems appropriate. Afterwards, both legs support the

body so that the large ankle stiffness is no longer necessary. Finally, during the swing

phase, the leg is no longer used for support so the stiffness remains constant.

These results indicate that ankle DC stiffness is functionally related to joint

position. However, as Fig. 5–8 demonstrates, ankle stiffness can take different values

for the same joint position. This indicates that this relation is not static, and most

likely, nonlinear.
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Figure 5–8: Relation between joint position and DC stiffness for the difference phases
of the gait cycle.

5.5.3 Comparison with other studies

No one has measured joint dynamic stiffness throughout the entire gait cycle.

E. Rouse et. al [109], measured ankle stiffness during the stance phase of the gait

cycle, and H. Lee et. al [110], estimated ankle compliance, the inverse of stiffness,

during the pre-swing and swing phases of walking. E. Perreault et. al [18] combined

these results. These active gait results compare favorably with our imposed walking

experiments. In all cases, the ankle DC stiffness showed a large increment in the

stance phase of the cycle. We observed and increment of around 420% while the
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results presented in [18] showed and increase of approximately 700%. Then, the DC

stiffness returned sharply to the heel-strike value during the pre-swing phase.

It is likely that the difference in the magnitudes arises from differences in vol-

untary torque between our passive walking movements and their active gait experi-

ments. However, the similarity in the trends indicate that the mechanisms underlying

the modulation in the passive and active joint stiffness share a common source.

5.5.4 Clinical relevance

Differentiation between spastic and non-spastic subjects

Some central nervous system disorders (e.g. stroke, spinal cord injury, cerebral

palsy) may alter the dynamic joint stiffness [194, 181]. This pathological behavior

might arise from increase intrinsic stiffness, or reflex stiffness, often refereed as spas-

ticity. Differentiating between these is an important and challenging clinical problem,

and sometimes, increased intrinsic stiffness might be misdiagnosed as spasticity, or

vice-versa [195]. This method can help to characterize pathological joint stiffness

and distinguish whether it arises from spasticity or altered intrinsic mechanisms.

For non-spastic patients, the algorithm can be used directly to characterize the

subject’s joint mechanical properties. This model and the predicted torque can be

used for diagnosis and monitoring. On the other hand, spastic patients will have an

overactive stretch reflex response so their torque will be a combination of the intrinsic

and reflex mechanism. As discussed, the algorithm will produce unbiased estimates

of the intrinsic, dynamic stiffness and torque. The predicted intrinsic torque can

then be used to estimate of the torque produced by the reflex mechanisms, which
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may be large even for relaxed muscles. The magnitude of these torque signals can

be used for diagnosis and monitoring.

Functional Electrical Stimulations (FES)

FES systems, which restore function to paralyzed limbs, use mathematical mod-

els of limbs and joints to estimate the torque required to produce a movement [196].

Recent advancements in FES have shown that simpler, lumped models of joint me-

chanics, such as the one presented here, provide less error than more complex, phys-

iologically inspired models [197, 198]. Moreover, experimental results have demon-

strated that models used in FES systems must capture the changes in joint mechanics

during movement [198]. The model and algorithm presented here are well suited for

this application; the model is general, linear in the parameters and can be estimated

with relatively small data sets. Therefore, we suggest that our algorithm is well

suited for use in FES control.
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CHAPTER 6
An Instrumental Variable Approach for the Identification of

Time-Varying, Hammerstein Systems

Authors: Diego L. Guarin and Robert E. Kearney

Journal: Proceedings of the 17th IFAC Symposium on System Identification SYSID

Year: 2015

One of the main complexities in the estimation of dynamic joint stiffness is

due to the nonlinear, Hammerstein structure used to represent the stretch reflex

mechanism. The estimation of time-invariant, Hammerstein systems is a mature

subject and many different techniques for the identification of the model parameters

are available. However, to our knowledge there are no publicly available algorithms

for the estimation of time-varying, Hammerstein systems. This chapter extends the

methods developed in chapters 4 and 5 and applies them for the identification of

time-varying, Hammerstein system, composed by a series combination of a time-

varying, static-nonlinearity and Box-Jenkins model. This is the first available algo-

rithm that estimates the elements of the time-varying, Hammerstein system model

from input-output data without a priori assumptions about the shape of the static

nonlinearity of the linear model structure.
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abstract

This paper introduces an iterative algorithm for the identification of time-

varying (TV)-Hammerstein systems. This system is composed by a TV static non-

linearity followed by a TV Box-Jenkins linear model. The algorithm uses two basis

function expansions: one to represent the TV parameters and a second to approx-

imate the output of the static nonlinearity. A simulation study showed that the

algorithm accurately identified the shape of the TV static nonlinearity and linear

dynamic elements even though the noise model structure was unknown.

6.1 Introduction

The Hammerstein system, a series connection of a static nonlinearity followed

by a linear dynamic element, is an important block-oriented structure that combines

the simplicity of linear systems with the generalization capacity of nonlinear systems.

Because of this, it has been successfully used in a variety of research areas includ-

ing biomedical engineering ([12]), chemical engineering ([199]) and signal processing

([150]).

Several methods have been proposed to identify the parameters of this kind

of models in a time-invariant (TI) situation. Among these, the iterative approach,

discussed in [151], is particularly appalling because different from other approaches,

it does not artificially increase the dimensionality of the search space. On the other

hand, the identification of time-varying (TV) Hammerstein systems is still an open

problem. Some methods have been presented but all have important limitations. For

example, [200] proposed a recursive method for the special case where the parameters

had a piece-wise linear time dependency; [201] described an ensemble based algorithm
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that requires hundreds of input-output realizations having the same time variation;

and [202] combined the ensemble and basis function expansion approaches in a non-

parametric method that requires large data sets.

This paper presents an algorithm for the identification of TV Hammerstein

systems modeled using the structure presented in Fig 6–1. The nonlinear and linear

elements are described by a TV polynomial and a TV Box-Jenkins (BJ) model where

the system and noise plants are parametrized independently. The noise is assumed

to be TI.

The algorithm combines three identification approaches: i) the TV parameters

of the nonlinear and linear elements are represented using basis function expansions;

this transforms the TV identification problem into TI at the cost of increasing the

number of parameters ([203]), ii) the BJ model parameters are estimated using a

modified version of the Refined Instrumental Variable algorithm, whose convergence

properties have been discussed elsewhere ([204]), and iii) the Hammerstein model is

identified using an normalized iterative approach similar to that proposed by [151].

The identification is performed in two steps; one concerned with the identification

of the linear dynamic element and the second with the identification of the static

nonlinearity. After an initial estimate of the TV linear dynamical element is found, it

is used to estimate the elements of the TV static nonlinearity; which in turn are used

to update the estimates of the TV linear element. The algorithm iterates between

these two steps updating the estimates iteratively until convergence.

This paper is structured as follows: Section 6.2 describes the algorithm. It

presents a Refined Instrumental Variable algorithm for the identification of TV BJ
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upkq

time

ūpkq

A
`
k, q´1

˘

B pk, q´1q Σ

C
`
q´1

˘

D pq´1q

ūpkq xpkq ypkq

epkq

vpkq

Figure 6–1: Time-varying Hammerstein comprising the series connection of a TV,
static nonlinearity followed by a TV, BJ model with a TI noise plant.

models where the TV parameters are described by basis function expansions. This

algorithm is then used to define an iterative method for the identification of TV,

Hammerstein systems. Section 6.3 presents a simulation study demonstrating that

the new algorithm performs well in our example. Finally, Section 6.4 discusses some

important contributions of the paper.

6.2 Methods

6.2.1 Identification of Time-Varying, Box-Jenkins Models

Consider the discrete, TV-BJ system

$
’’’’’’&
’’’’’’%

A pk, q´1q xpkq “ B pk, q´1q ūpkq,

vpkq “
C pq´1q

D pq´1q
epkq,

ypkq “ xpkq ` vpkq,

(6.1)

where xpkq is the noise-free output, ūpkq the input, vpkq the output noise, ypkq the

noisy output, epkq a zero mean, normally distributed noise signal with variance σ2

that is uncorrelated with the input, and q´1 is the backward shift operator. The TV
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system polynomials are

A
`
k, q´1

˘
“ 1 `

naÿ

i“1

aipkqq´i, (6.2a)

B
`
k, q´1

˘
“ b0pkq `

nbÿ

i“1

bipkqq´i. (6.2b)

The TV parameters are approximated using a basis function expansion

aipkq “ αi,0 `
nαÿ

j“1

αi,jπjpkq, i “ 1, ¨ ¨ ¨ , na, (6.3a)

bipkq “ βi,0 `

nβÿ

j“1

βi,jπjpkq, i “ 0, ¨ ¨ ¨ , nb, (6.3b)

where αi,0 ‰ 0, βi,0 ‰ 0, and tπju
nα,nβ

j“1 is a set of predefined basis functions. Using

this parametrization The TV-BJ model is then defined by the TI parameter set

ρ “ rα1,0 . . . αna,0 α1,1 . . . α1,nα
. . . αna,1 . . . αna,nα

β0,0 . . . β0,nβ
. . . βnb,0 . . . βnb,nβ

‰T
. (6.4)

The TI noise polynomials are

C
`
q´1

˘
“ 1 `

ncÿ

i“1

ciq
´i, (6.5a)

D
`
q´1

˘
“ 1 `

ndÿ

i“1

diq
´i. (6.5b)
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Using (6.3a) and (6.3b), the noise-free output (xpkq) can be expressed as the linear,

TI model

x pkq “
1

F pq´1q

«
´

naÿ

i“1

nαÿ

j“1

αi,jxj pk ´ iq

`
nbÿ

i“0

nβÿ

j“0

βi,j ūj pk ´ iq

ff
. (6.6)

Where π0pkq “ 1 for all k and

xj pk ´ iq “ πjpkqx pk ´ iq , (6.7a)

uj pk ´ iq “ πjpkqu pk ´ iq . (6.7b)

F pq´1q is a polynomial with constant coefficients given by

F
`
q´1

˘
“ 1 `

naÿ

i“1

αi,0q
´i. (6.8)

Now define a cost function based on the one-step-ahead prediction error

VN pθq “
1

2N

Nÿ

k“1

ǫ2pkq, (6.9)

where

ǫpkq “
D̂

`
q´1

˘

Ĉ
`
q´1

˘ rypkq ´ x̂pkqs .
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The “ˆ” indicates the expected value estimated from past data up to time k´1. For

simplicity, ǫpkq is expressed as

ǫpkq “ F̂
`
q´1

˘
yf̂pkq `

naÿ

i“1

nαÿ

j“1

α̂i,jx̂
f̂
j pk ´ iq

´
nbÿ

i“0

nβÿ

j“0

β̂i,j ū
f̂
j pk ´ iq, (6.10)

where the new variables

yf̂pkq “ f̂
`
q´1

˘
ypkq, (6.11a)

ū
f̂
j pk ´ iq “ f̂

`
q´1

˘
ūjpk ´ iq, (6.11b)

x̂
f̂
j pk ´ iq “ f̂

`
q´1

˘
x̂jpk ´ iq, (6.11c)

have been used. In addition we defined

f̂
`
q´1

˘
“

˜
D̂

`
q´1

˘

Ĉ
`
q´1

˘
¸ ˜

1

F̂
`
q´1

˘
¸
. (6.12)

The cost function, (6.9), will be at a minimum when it’s partial derivatives with

respect to each parameter equal zero; as shown by [204] for the TI case, this leads

to the following relation:

ρ̂ “

«
1

N

Nÿ

k“1

φ̂f̂pkqϕ̂T

f̂
pkq

ff´1 «
1

N

Nÿ

k“1

φ̂f̂pkqyf̂pkq

ff
, (6.13)
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with the new variables

α̂na,nα
β̂0,0 . . . β̂0,nβ

. . . β̂nb,0 . . . β̂nb,nβ

ıT

, (6.14a)

ϕ̂f̂pkq “
”
´yf̂pk ´ 1q . . . ´ yf̂pk ´ naq ´ x̂

f̂
1pk ´ 1q

. . . ´ x̂f̂
nα

pk ´ 1q ¨ ¨ ¨ ´ x̂
f̂
1pk ´ naq . . . ´ x̂f̂

nα
pk ´ naq

ū
f̂
0pkq . . . ūf̂

nβ
pkq . . . ū

f̂
0pk ´ nbq . . . ūf̂

nβ
pk ´ nbq

ıT
(6.14b)

φ̂f̂pkq “
”
´x̂f̂pk ´ 1q . . . ´ x̂f̂ pk ´ naq ´ x̂

f̂
1pk ´ 1q

. . . ´ x̂f̂
nα

pk ´ 1q ¨ ¨ ¨ ´ x̂
f̂
1pk ´ naq . . . ´ x̂f̂

nα
pk ´ naq

ū
f̂
0pkq . . . ūf̂

nβ
pkq . . . ū

f̂
0pk ´ nbq . . . ūf̂

nβ
pk ´ nbq

ıT
. (6.14c)

Where yf̂pkq and uf̂pkq are the input and output signals filtered f̂pq´1q; x̂f̂pkq is an

estimate of the noise-free output and satisfies the conditions required of an instru-

mental variable, an auxiliary variable that is used to reduce the influence of the noise

in the estimates ([204]). This instrumental variable can not be measured directly

but can be estimated from (6.6) using estimates of the parameter set ρ̂. This leads

to an iterative or refined procedure where the current values of the parameter set

are used to estimate the instrumental variable and in turn this is used to update the

parameter set.

Algorithm 3 presents the resulting Refined-Instrumental-Variable (RIV) algo-

rithm for the identification of TV-BJ models. This algorithm is a simple modification

of the method proposed by [101] and has been already introduced elsewhere ([177]).
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Algorithm 3 TV-RIV

Input: typkquNk“1, tūpkquNk“1, tπjpkqu
N, maxpnα,nβq

k“1, j“0 , na, nb, nc and nd

Output: tÂpk, q´1quNk“1 , tB̂pk, q´1quNk“1 and tx̂pkquNk“1

1. Find an initial estimate of ρ̂0 by assuming that the system is LTI and using the
Refined Instrumental Variable algorithm [101, Chap. 7]. Set D̂0pq´1q “ Ĉ0pq´1q “ 1
and the counter w to 0.
2. Use (6.6) to estimate the instrumental variable tx̂pkquNk“1. 3. Form the filter

f̂ pwq
`
q´1

˘
“

D̂pwq pq´1q

Ĉpwq
`
q´1

˘
F̂ pwq

`
q´1

˘ ,

4. Generate the filtered input typkqf̂uNk“1, and output tupkqf̂uNk“1, tx̂pkqf̂uNk“1 signals.

5. Use the basis functions tπjpkqu
N, maxpnα ,nβq
k“1, j“0 to form the regressor matrices

tϕ̂f̂ pkquNk“1 and tφ̂f̂pkquNk“1 using (6.14b) and (6.14c).
6. Use (6.13) to update the parameter estimates.
7. Update the instrumental variable tx̂pkquNk“1 and compute the noise signal as

v̂pkq “ ypkq ´ x̂pkq.

Use this to estimate the noise model parameters with any of the well known method
to estimate ARMAX models.
8. If the difference between ρ̂pw`1q and ρ̂pwq is not significant or, if the maximum
number of iterations is exceeded, go to step 9, else increment w and go to step 3.
9. Compute the elements of Âpk, q´1q and B̂pk, q´1q for all k using (4.15) and (??).



6.2.2 Identification of Time-Varying, Hammerstein Systems

Consider the discrete, TV Hammerstein system

$
’’’’’’’’’’&
’’’’’’’’’’%

ūpkq “ gpk, upkqq,

A pk, q´1q xpkq “ B pk, q´1q ūpkq,

vpkq “
C pq´1q

D pq´1q
epkq,

ypkq “ xpkq ` vpkq,

(6.15)

where gpk, ‚q is a TV, static nonlinearity. It can have any shape as long as its effect

on the input can be approximate as

ūpkq “ gpk, upkqq «
Mÿ

i“0

ripkqΓi pupkqq , (6.16)

where Γ0pupkqq “ 1 for all k. The TV behavior of the coefficients pripkqq is in turn

described by the basis function expansion

ripkq “

nγÿ

j“0

γi,jπjpkq, i “ 1, ¨ ¨ ¨ ,M. (6.17)

Inserting (6.16) and (6.17) into (6.15) yields

$
’’’’’’&
’’’’’’%

xpkq “
Bpk,q´1q
Apk,q´1q

řM
i“0

řnγ

j“0 γi,jπjpkqΓi pupkqq ,

vpkq “
C pq´1q

D pq´1q
epkq,

ypkq “ xpkq ` vpkq,

(6.18)
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With this parametrization the TV-Hammerstein model is now defined by two TI

parameter sets: ρ, given by (7.5), and

η “
“
γ0,0 . . . γM,0 . . . γ0,nγ

. . . γM,nγ

‰T
. (6.19)

It is clear from (6.18) that if η, the TV-static nonlinearity, is known then the

identification of the TV-Hammerstein systems reduces to the identification of a TV-

BJ model. On the other hand, if ρ, which defines the TV linear dynamics, is known

then the input-output relation reduces to

ypkq “
Mÿ

i“0

nγÿ

j“0

γi,jzi,jpkq ` vpkq, (6.20)

where

zi,jpkq “
B pk, q´1q

A pk, q´1q
rπjpkqΓi pupkqqs . (6.21)

and the parameter set that minimizes the one-step-ahead prediction error is then

given by the least-squares solution

η̂ “

«
1

N

Nÿ

k“1

ẐpkqẐT pkq

ff´1 «
1

N

Nÿ

k“1

ẐpkqyT pkq

ff
, (6.22)

where

Ẑpkq “
“
ẑ0,0pkq . . . ẑM,0pkqpkq . . . ẑ0,nγ

pkq (6.23)

. . . ẑM,nγ
pkq

‰T
,

where ẑi,jpkq is estimated from (6.21) using the current values of Âpk, q´1q and

B̂pk, q´1q.
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Algorithm 4 combines these solutions to give a RIV algorithm for the identifi-

cation of TV-Hammerstein systems.
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Algorithm 4 TV-RIV for Hammerstein systems

Input: typkquNk“1, tupkquNk“1, tπjpkqu
N, maxpnα,nβ ,nγq

k“1, j“0 , tΓjp‚qMj“0u na, nb, nc, nd, nα,
nβ, nγ and M .

Output: tÂpk, q´1quNk“1 , tB̂pk, q´1quNk“1 , tr̂ipkquN,M
k“1,j“0, and tx̂pkquNk“1

1. Find an initial estimate of ρ̂0, D̂0pq´1q and Ĉ0pq´1q using ypkq, upkq and the
Algorithm 1. Set the counter m to 1.
2. Compute Ẑpkq for all k using (6.21) and (6.23) and use (6.22) to update the
estimate of the static nonlinearity.
3. Compute ˆ̄upkq using (6.16) and (6.17).
4. Estimate ρ̂m, D̂mpq´1q and Ĉmpq´1q using ypkq, ˆ̄upkq and Algorithm 1.
5. Compute b̂mi pkq for all i and k using (6.3b) and normalize it as

b̂mi pkq “ ξmb̂
m
i pkq||η̂m||,

also normalize the elements of the static nonlinearity as

η̂m “ ξm
η̂m

||η̂m||
.

Where ξm “ ˘1 is the sign of the first nonzero element of η̂m.
6. If the difference between ρ̂pm`1q and ρ̂pmq, and η̂pm`1q and η̂pmq is not significant
or, if the maximum number of iterations is exceeded, go to 6. Otherwise increment
m and go to step 2.
6. Compute the elements of Âpk, q´1q, B̂pk, q´1q and r̂ipkq for all k using (6.3a),
(6.3b) and (6.17)



6.2.3 Estimation of the noise model

Algorithm 3 estimates models for both the noise and the system at each iteration

and uses these estimates to compute the filter f̂pq´1q. However, estimating the noise

model may be difficult since the input to the noise plant cannot be measured and

its order is usually unknown a priori. However, the BJ structure parametrizes the

system and noise plants independently so that estimates of their parameters are

asymptotically independent. That is, provided there is enough data, the estimates of

the system polynomials (Âpk, q´1q, and B̂pk, q´1q) are not dependent on the estimates

of the noise polynomials (Ĉpq´1q, and D̂pq´1q). In practice, this means that if it is

assumed that Cpq´1q “ Dpq´1q “ 1 the estimates Âpk, q´1q, and B̂pk, q´1q will not

differ significantly from those obtained when the noise model is estimated ([205, 101,

204]).

6.3 Simulation Example

The algorithm was validated using simulated data from the TV-Hammerstein

system $
’’’’’’’’’’&
’’’’’’’’’’%

ūptq “ gpt, uptqq,

xptq “ ´Gptq ω2ptq
s2`2ζptqωptqs`ω2ptq

ūptq,

vpkq “ 1´0.2q´1

1´q´1`0.2q´2 epkq,

ypkq “ xpkq ` vpkq.

(6.24)

This is an hybrid model where the system is continuous but the noise and the

measured output are discrete. This model was selected because it is a good repre-

sentation of stretch reflex dynamics ([64]) and therefore has applications in motor

control research. The model parameters where selected to resemble those observed
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Figure 6–2: Elements of the simulated TV-Hammerstein system: (a) TV static non-
linearity, and (b) TV frequency response of the linear, dynamic.

experimentally ([64]). Fig. 6–2a shows the simulated TV static nonlinearity; it re-

sembles a half-wave rectifier whose threshold, slope, and saturation vary with time.

The TV, linear, dynamic element was a low-pass filter with TV resonant frequency.

Fig. 6–2b shows its frequency response gain as a function of time.

The noise plant was modeled by a low-pass filter with a cut-off frequency of 5

Hz; the plant and noise model did not share any poles.

6.3.1 Simulation

The continuous time system was simulated using Matlab (The Mathworks) for

30s at a sampling rate of 1KHz and then decimated to 100 Hz for further analysis.

The ratio between the variances of the output and noise signals was 15dB.

Fig. 6–3 shows a typical simulation trial. The input (top panel) was TI with a

normal distribution and a bandwidth of 30Hz. The characteristics of the noise-free
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output (middle panel) show a clear time dependency. The bottom panel shows the

colored noise signal.
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Figure 6–3: Typical simulation trial: a) Input signal, b) noise-free output and c)
additive noise.
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6.3.2 Parametrization

The new algorithm describes the linear, dynamic element as a discrete-time, TV,

BJ system and the static nonlinearity as a basis function expansion. Consequently,

before starting the identification procedure it was necessary to i) find the discrete-

time equivalent of the simulated continuous-time model, and ii) find an appropriate

parametric representation of the static nonlinearity.

Discrete-time system:

Using the bi-linear transformation and considering the noncommutativity of the

backshift operator (i.e., q´1xpkqupkq “ xpk´1qupk´1q), the continuous-time model

of (6.24) can be shown to be equivalent to the discrete-time model

xpkq “
hpkq p1 ` 2q´1 ` q´2q

1 ` p1pkqq´1 ` p2pkqq´2
ūpkq, (6.25)

where hpkq, p1pkq and p2pkq are the TV, discrete-time parameters.

Time-varying parameters:

The basis function set used to describe the time-varying parameters comprised

the Tchebychev polynomials of order 0 to 6. These were selected because: i) The

variances of all the polynomials are similar and so the estimation problem should

remain well scaled. ii) Experience has shown they generate well-conditioned regres-

sors. iii) The simulated values were generated as power functions of time, so using

Tchebychev polynomials as basis functions can help to validate the robustness of the

algorithm to the lack of information regarding the true basis functions.
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Static nonlinearity:

The basis functions used to model the static nonlinearity were Tchevichev poly-

nomials of order 0 to 4.

6.3.3 Results

Two points should be noted with respect to the results presented in this section:

i) The identification procedure did not attempt to estimate the noise model. This

is equivalent to incorrectly assuming that the noise model was Cpq´1q “ Dpq´1q “ 1

but as is argued in Section 6.2.3 this should not influence the estimation of the

system parameters. ii) The DC gain of a Hammerstein system may be partitioned

arbitrarily between the static nonlinearity and the linear dynamics. Consequently,

for consistency, in the results presented here all the gain was assigned to the static

nonlinearity and that of the linear dynamic element forced to be one for all t.

Single trial results:

For comparison purposes, a TI model was estimated between the input and

noisy output for a typical trial using the new algorithm by setting the order of the

Tchebychev polynomials used to represent the TV parameters to zero, and the order

of the linear model equal to that of (6.25). The Variance Accounted For (%VAF)

between the TI model predicted output and the noise-free simulated output was only

65%; demonstrating the need for a TV model.

Next, the TV-RIV algorithm was applied with the full basis function set. The

resulting TV model predicted output accounted almost all (98.4%) of the noise-free

output variance. Fig. 6–4 shows the model predicted output and its residuals. The
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residuals are TI, showing that TV behavior of the plant has been fully captured by

the estimated model.

−10

0

10

x̂
(k

)

TV model prediction

0 5 10 15 20 25 30

−10

0

10

Time (s)

v̂
(k

)

Residuals

A.

B.

Figure 6–4: Results obtained with the estimated TV model. a) Predicted output,
and b) residuals.

Monte Carlo results:

To further examine the performance of the TV-RIV algorithm the simulations

were repeated 200 times and TV models were estimated for each realization. The

algorithm needed less than 10 iterations to converge in all trials; the %VAF between

the simulated and predicted outputs was always larger than 98%. Fig. 6–5 shows

the simulated (blue) and estimated (red) static nonlinearities at three times. Fig.

6–6 presents the simulated and estimated frequency response gains. The similarity
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of the estimated curves to each other and to the simulated curves demonstrate that

the TV-RIV estimates had low variance and were accurate.

Figure 6–5: True (blue) and estimated (red ) static nonlinearities at three times. a)
5s, b) 15s and c) 25s.
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Figure 6–6: True (blue) and estimated (red) frequency response gains at three times.
a) 5s, b) 15s and c) 25s.
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6.4 Discussion

We have presented an algorithm for the identification of TV-Hammerstein sys-

tems composed of a TV static nonlinearity, represented as a combination of pre-

defined basis functions, followed by a TV linear dynamic element, represented by

a TV-BJ model. Our algorithm approximates the TV model parameters by a lin-

ear combination of basis functions; this approximation guarantees that, provided an

appropriate set of basis functions is selected, any kind of static nonlinearity and time-

dependency can be modeled. However, it adds the additional constraint of having to

determine what is the appropriate set of basis functions. While this problem has no

solution in general, our experience with the method has shown that the Tchevicheb

polynomials provide a good initial approximation of the parameters time-dependency.

Once this is available it may be possible to find other basis functions that provide

more accurate results.

Another important aspect of the algorithm is the selection of the order of the

approximation; this dictates the number of free parameters of the model and thus

the dimension of the search space. Fortunately, there is a fracture point were adding

additional basis functions will increase the prediction error, restricting in this way the

maximum number of basis that can be used. The selection of the optimal number of

basis functions to use is more complicated and some approaches haven been proposed

([202, 203]) but there is yet no definitive solution. We are studying the possibility

of using an sparse optimization algorithm that will force the parameters associated

with non-contributing basis functions to zero.
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CHAPTER 7
Identification of Time-Varying, Intrinsic and Reflex Dynamic Ankle

Stiffness during Imposed Walking
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This chapter develops a new methodology for the identification of joint dynamic

stiffness during time-varying conditions that facilitates the characterization of joint

neuromechanical properties during function. Overall joint stiffness is modeled by a

parallel-cascade structure composed of intrinsic and reflex pathways. Intrinsic stiff-

ness is described by a time-varying, non-parametric, linear model, and reflex stiffness

is described by a time-varying, Hammerstein system, composed by a series combina-

tion of a time-varying, static-nonlinearity and Box-Jenkins model. The algorithms

developed in Chapters 4, 5 and 6 are combined to estimate the intrinsic and reflex

components of the dynamic joint stiffness sequentially, iterations are used to refine

the parameters estimates. This method is applied to measure the intrinsic and re-

flex dynamic stiffness from one subject in an imposed walking movement experiment

with constant muscle activation. Results show, for the first time, how the intrinsic
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and reflex components of dynamic ankle stiffness change during movement, and pro-

vide new evidence of how the neuromechanical joint properties are modulated during

function.
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Abstract

Dynamic joint stiffness determines the relation between joint position and torque,

and plays a vital role in the control of posture and movement. It is usually quanti-

fied during stationary conditions using disturbance experiments, were small position

perturbations are applied to the joint and the produced torque is recorded. How-

ever, dynamic joint stiffness is composed of intrinsic and reflex mechanisms, these

act and change together, so that nonlinear, mathematical models and specialized

system identification techniques are required to separate their individual contribu-

tions. Experimental evidence has shown that dynamic joint stiffness is heavily mod-

ulated by the operating point, defined by joint position and voluntary torque, so

that during function, where the operating point undergoes large, rapid changes, the

model parameters will appear to be Time-Varying (TV). This study introduces a

new methodology to quantify the intrinsic and reflex components of joint dynamic

stiffness during movement. The algorithm combines ensemble and deterministic ap-

proaches to estimate the parameters of a TV, dynamic joint stiffness model from

position and torque records. A Simulation study demonstrated that the new algo-

rithm accurately tracks the changes the model parameters expected during walking

using as little as 40 gait cycles. Furthermore, the method was applied to estimate

the intrinsic and reflex dynamic stiffness during an imposed walking movement with

constant muscle activation. The identified TV models predicted the measured torque

very well, accounting for more than 95 % of the signal variance. Results showed that

both intrinsic and reflex dynamic stiffness changed greatly through the gait cycle; in
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particular, the gain of both pathways increased at least three fold during the stance

phase of the gait cycle.

7.1 Introduction

The role of the short-latency stretch reflex during movement remains controver-

sial [206, 207, 208]. While some studies suggest that reflex response serves to facilitate

all voluntary movements [209, 210], others have proposed that the myotatic response

plays a role only in extreme or pathological cases [43], or during early adaptation to

a new tasks or conditions [178].

EMG is often used to study the functional role of reflexes [206, 211, 208, 178].

However, EMG is influenced by reflex response and other factors, such as voluntary

activity. In addition, the relation between EMG and joint torque is influenced by

muscle length and contraction velocity, so that is difficult to estimate the mechanical

contributions of stretch reflex during function using only EMG [48, 212, 59].

H-reflexes have also been used to quantify the reflex activity [49]. Studies in-

volving H-reflexes apply electrical stimulation to excite the system, bypassing the

fusimotor systems and the mechanical stimulus to muscle spindles, which can be

heavily modulated during function via γ-motor neurons [207]. In addition, direct

stimulation of the nerve might result in the excitation of different afferent mecha-

nisms that project to the α´motorneurons (e.g. skin sensors, Golgi tendon organs)

so that the resultant response will be generated by combination of the different path-

ways [47]. Consequently, the functional relevance of these studies is not completely

clear.
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A better approach would be to directly measure the mechanical consequences of

the reflex activity. However, it is difficult to separate the myotatic response from that

due to the intrinsic properties of the muscle and connective tissue surrounding the

joints. Experimentally this has been achieved by comparing the mechanical behavior

of a joint before and after deafferentation using surgery, anaesthesia, cuffing or other

manipulation [43, 213]. However, is difficult to validate to what extent this process

affects the intrinsic properties of the joint [47, 12].

An alternative approach would be to perform the deafferentation analytically

using mathematical models and system identification techniques to separate the

mechanical effects of the intrinsic and reflex mechanisms. System identification

techniques, using small, random perturbations to excite the intrinsic and reflex dy-

namics, have been successfully applied to multiple joints with different model types

[70, 214, 47, 215]. These models have typically been linear; however, the mechanical

response produced by stretch reflexes are highly nonlinear [59], so that these models

fail to completely characterize the stretch reflex mechanisms or simply ignore it. The

parallel-cascade model, proposed by R. E. Kearney et at., describes the intrinsic and

stretch reflex mechanisms in terms of dynamic joint stiffness, that determines the

dynamic relation between joint position and the torque acting about it. Intrinsic

dynamic stiffness arises from the mechanical properties of the joint, passive tissue,

and active muscle fibers, and is described by a linear model relating joint position

and torque. Reflex dynamic stiffness arises from changes in muscle activation due to

the short-latency stretch reflex, and is described by a nonlinear, Hammerstein model

relating joint velocity and torque [12].
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Successful application of these analytical techniques have been typically limited

to stationary conditions, where the operating point, defined by the joint position

and voluntary torque, remains relatively constant throughout the experiment. Sta-

tionary experiments have shown that the parallel-cascade model parameters change

significantly with the operating point [11, 64]. Consequently, when the operating

point changes continuously, as during walking, stiffness model parameters will be-

come time-varying (TV).

Several studies have characterized the intrinsic dynamic stiffness during TV con-

ditions, ignoring the stretch reflex contributions [106, 107, 108, 109, 110, 125, 216].

We have introduced methods for the estimation of intrinsic and stretch reflex mech-

anisms using the parallel-cascade model structure during TV conditions; however,

these methods require very large data sets for parameter estimation, which severely

limits their application [111, 112, 103, 113]. Results show that interpolation of pa-

rameter values obtained from stationary experiments does not describe joint dy-

namic stiffness during TV conditions. Therefore, methods that can track parameters

changes during TV conditions are required to capture the modulation of the dynamic

joint stiffness during function.

This paper develops and validates a novel method to estimate the intrinsic and

reflex components of joint dynamic stiffness during periodic, movements, such as

walking. This method improves over previous algorithms in several ways: i) it sig-

nificantly reduces the data requirements for accurate parameter estimation; ii) it

parametrizes the system and noise plants independently, diminishing the negative

effect that the complex, non-white noise encountered in physiological system, has on
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the parameter estimates; and iii) it is not based on correlation analysis, so it can be

easily reformulated to work with data measured in closed-loop.

This paper is organized as follows: Section 7.2 presents the TV, parallel-cascade

model of joint dynamic stiffness and introduces a novel re-parametrization that ap-

proximates, the non-linear, TV model with a set of linear, time-invariant models. It

then introduces an algorithm to estimate the parameters of this model using data

acquired during periodic, TV conditions. Section 7.3 describes the simulation study

used to evaluate the performance of the new model parametrization and identifica-

tion algorithm. Section 7.4 demonstrates the practical application of the algorithm

to estimate intrinsic and reflex ankle dynamic stiffness during imposed walking move-

ments with constant voluntary torque. Section 7.5 summarizes the contributions and

discusses some important aspects underlying the method and its application.

7.2 Model Formulation and Parameter Identification

7.2.1 Joint position perturbations and torque

To estimate joint dynamic stiffness during movement, small position perturba-

tions must be applied on top of the joint trajectory [75]. Thus, the overall, perturbed

joint trajectory is

θptkq “ θ0ptkq ` θpptkq, (7.1)

where θ0ptkq is the joint trajectory and θpptkq the perturbations.

Under stationary conditions, where the joint position, θ0, is an offset that is

fix throughout the experiment, and the voluntary joint torque is constant, the net
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moment at the joint is

TQptkq “ TQ0 ` TQpptkq ` ξptkq,

where TQ0 is a constant torque, produced by passive mechanisms due to the position

offset θ0, and by active mechanisms due to the constant muscle activation; TQpptkq is

a perturbation torque, produced by the excitation of intrinsic and reflex mechanisms

by the position perturbations; and ξptkq is a noise signal produced by the combination

of physiological and measurement noise [173, 174]. Experimental evidence has shown

that for small, zero-mean position perturbations, the perturbation torque is given by

TQpptkq “ TQIptkq ` TQRptkq

where TQIptkq and TQRptkq are the torques produced by the intrinsic and reflex

mechanisms, which cannot be measured directly. However, under stationary condi-

tion, a noisy version of the perturbation torque can be retrieved from the net moment

at the joint by removing the constant offset TQ0 from the measured data. Once the

perturbation position and torque are computed, specialized analytical methods and

models can be used to estimate the individual contributions of the intrinsic and reflex

mechanisms [12].

On the other hand, under TV conditions, the joint trajectory θ0ptkq and/or

the muscle activation level vary during the experiment, so that TQ0ptkq, the torque

produced by passive and voluntary mechanisms is no longer constant. Consequently,

estimating the perturbation torque from the net joint moment now requires a three

step procedure: First, a perturbed joint trajectory is applied and the net joint torque,
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given by

TQptkq “ TQ0ptkq ` TQpptkq ` ξptkq,

is recorded. Then, a un-perturbed joint trajectory is applied an the net joint torque

TQ˚
0ptkq is recorded. Finally, the torque recorded in both experiments is subtracted

to compute a noisy estimate of the perturbed torque. However, it is not realistic to

expect that the joint will follow the exact same trajectory and/or that the subject

will exert exactly the same voluntary torque in the perturbed and un-perturbed

experiments. Therefore, under TV conditions, the perturbation torque is given by

TQpptkq “ TQIptkq ` TQRptkq ` TQ∆ptkq, (7.2)

where TQ∆ptkq represents the possible non-zero difference between passive and vol-

untary torques produced during the perturbed and un-perturbed experiments.

7.2.2 Time-varying dynamic joint stiffness

Once the perturbation joint position and torque are available, a system iden-

tification procedure can be applied to analytically separate the intrinsic and reflex

components. Under stationary conditions, this can be achieved by modeling the

overall dynamic joint stiffness with a parallel-cascade structure, where the intrinsic

stiffness is described by a linear systems relating joint position and intrinsic torque,

and the reflex stiffness is described by a Hammerstein systems relating joint velocity

and reflex torque [12, 64, 62].

Under TV conditions, a TV version of the parallel-cascade structure, shown in

Fig. 7–1, has been successfully applied to describe the overall dynamic joint stiff-

ness [111, 112, 103, 113]. However, the identification algorithms used to estimated
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´ 9θpptkq
time

9̄θpptkq

hRpτ, tkq
9θpptkq 9̄θpptkq

TQRptkq

Σ

∆drθpptkqs
dtk

θpppptkqqq
hIpτ, tkq

TQIptkq

TQ∆ptkq

Σ
TQpppptkqqq

ξptkq

θp Position Perturbations
9θp Joint Velocity
TQp Joint Torque

∆ Reflex Delay

TQI Intrinsic Torque

TQR Reflex Torque

TQ∆ Additional Torque
9̄θp Nonlinear Velocity

hIp‚q TV Intrinsic Dynamics

hRp‚qTV Reflex Dynamics

gp‚q TV Static Nonlinearity

Measurable Non-Measurable to Estimate

Figure 7–1: Time-Varying, Parallel-Cascade model structure representing the in-
trinsic and reflex response of the joint to small position perturbations. Measurable
signals are shown in blue while those that can only be estimated are shown in red.

the TV model parameters require very large data sets and are difficult to use in

practice.

We introduce an alternative parametrization of the TV, nonlinear, parallel-

cascade model of dynamic joint stiffness that transforms it into a set of pseudo-linear,

time-invariant models.

Intrinsic dynamic stiffness

are usually described by a second order, linear model relating position and

torque [1]

TQIptkq “ Kptkqθpptkq ` Bptkq
drθpptkqs

dtk
` I

d2rθpptkqs

d2tk
, (7.3)
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where Kptkq, Bptkq and I are the intrinsic elasticity, viscosity and inertia. However,

recent experimental evidence suggests that the intrinsic dynamics stiffness is more

complex than second-order [217]. Therefore, we choose to describe intrinsic stiffness

with the TV, non-parametric model

TQIptkq “
τ“Lÿ

τ“´L

hIpτ, tkqθpptk ´ τq, (7.4)

where hIpτ, tkq is a TV, impulse response function (IRF) that requires no a priori

assumption of model order. The length of the system memory must be specified but

there is much evidence a memory of 40 ms is adequate [12, 216, 217].

Model re-parametrization :

The TV-IRF can be approximated as a linear combination of basis functions

hI pτ, tkq “
j“nλÿ

j“0

λτ,jΛj ptkq ,

where tΛjptkquj“nλ

j“0 are a set of pre-defined basis functions and λτ,j their coefficients.

The intrinsic dynamic stiffness can then be approximated by the linear, time-

invariant model

TQIptkq “
τ“Lÿ

τ“´L

j“nλÿ

j“0

λτ,jΛj ptkq θpptk ´ τq. (7.5)

Reflex dynamic stiffness

can be described by a Hammerstein system, comprising a series combination of a

static-nonlinearity and a second-order, linear dynamic system, relating joint velocity
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and reflex torque [113, 64, 62].

9̄θpptkq “ g
´

9θpptkq, tk

¯
, (7.6a)

d2rTQRptkqs

dt2k
` 2ζptkqωptkq

drTQRptkqs

dtk
` ω2ptkqTQRptkq

“ Gptkqω2ptkq 9̄θpptkq, (7.6b)

where 9θpptkq is the joint velocity, and gp‚, tkq is a TV, static non-linearity; and ζptkq,

ωptkq and Gptkq are the damping, natural frequency and gain respectively.

This continuous-time, TV, differential can be approximated by a set of frozen,

discrete-time, transfer function models given by

TQRptkq “
b0ptkq p1 ` 2q´1 ` q´1q

1 ` a1ptkqq´1 ` a2ptkqq´2
9̄θpptkq, (7.7)

where b0ptkq, a1ptkq and a2ptkq are discrete-time, TV parameters and q´1 is the back-

ward shift operator. The continuous-time and discrete-time parameters are related

to each other by

Gptkq “ 4

„
b0ptkq

1 ` a1ptkq ` a2ptkq


,

ωptkq “
2

T

„
1 ` a1ptkq ` a2ptkq

1 ´ a1ptkq ` a2ptkq

1{2

,

ζptkq “
1 ´ a2ptkq

rp1 ` a1ptkq ` a2ptkqq p1 ´ a1ptkq ` a2ptkqqs1{2
.

Model re-parametrization :
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The TV, static non-linearity can be approximated by the linear combinations of

Kernel functions

9̄θp ptkq “ g
´

9θpptkq, tk

¯
«

i“ncÿ

i“0

ci ptkqCi

´
9θp ptkq

¯
,

where Cip‚q are a set of pre-defined Kernels (e.g. polynomials, radial basis) and ci

are their TV coefficients. Following the same procedure as before, these are approx-

imated by a linear combination of basis functions as

ciptkq “

j“nγÿ

j“0

γi,jΓj ptkq ,

where tΓjptkqu
j“nγ

j“0 are a set of basis functions and γi,j their coefficients.

Similarly, the TV parameters of the linear system can be approximated by a

linear combination of basis functions

b0 ptkq “

j“nβÿ

j“0

β0,jΨj ptkq ,

ai ptkq “ αi,0 `
j“nαÿ

j“1

αi,jΠj ptkq , i “ 0, . . . , na.

where αi,0 ‰ 0. tΨjptkqu
j“nβ

j“0 and tΠjptkquj“nα

j“0 are sets of basis functions with

Π0ptkq “ 1, @tk; β0,j, and αi,j their coefficients.

Using these definitions, the relation between the reflex torque (TQRptkq) and

joint velocity can be approximated by the discrete-time, time-invariant, Hammerstein

system

9̄θp ptkq “
i“ncÿ

i“0

j“nγÿ

j“0

γi,jΓj ptkqCi

´
9θp ptkq

¯
, (7.8a)
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TQR ptkq “
1

F pq´1q

«
´

naÿ

i“1

nαÿ

j“1

αi,jΠj ptkqTQR ptk ´ iq

`

nβÿ

j“0

βi,jΨj ptkq 9̄θp ptkq

ff
, (7.8b)

where F pq´1q is the polynomial

F
`
q´1

˘
“ 1 ` α1,0q

´1 ` α2,0q
´2,

Other components

TQ∆ptkq is expected to be an stochastic, low-frequency signal. It can be de-

scribed by a linear combination of basis functions

TQ∆ptkq “

j“npÿ

j“0

piPiptkq, (7.9)

where tPiptkqu
j“np

j“0 are a set of basis functions and pi their coefficients.

Overall joint stiffness

Using these re-parameterizations, the overall relation between joint position and

torque, shown in Fig. 7–1, can be approximated by the linear, TI models shown in

equations (7.5), (7.8a), (7.8b), and (7.9) with coefficients

ρI “ rλ´L,0 ¨ ¨ ¨λ´L,nλ
¨ ¨ ¨λL,0 ¨ ¨ ¨λL,nλ

s , (7.10a)

ρR “
“
α1,0 ¨ ¨ ¨α1,nα

¨ ¨ ¨α2,0 ¨ ¨ ¨α2,nα
β0,0 ¨ ¨ ¨β0,nβ

γ0,0 ¨ ¨ ¨ γ0,nγ
¨ ¨ ¨ γnc,0 ¨ ¨ ¨ γnc,nγ

‰
, (7.10b)

ρA “
“
p0 ¨ ¨ ¨ pnp

‰
, (7.10c)
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7.2.3 Identification of TV, dynamic joint stiffness

We now describe an algorithm for the identification of the re-parametrized mod-

els of the intrinsic, reflex and TQ∆ptkq. There are four key elements to the algorithm.

First, as Fig. 7–1 shows, TQIptkq, TQRptkq and TQ∆ptkq cannot be measured directly

so the models that describe each component cannot be estimated directly from mea-

sured data. This problem is addressed using an iterative algorithm that estimates

the models sequentially by removing the influence of the other pathways before esti-

mating the parameters of each component [12, 113].

Second, the parameters of the Hammerstein system that represents the reflex

component are identified using an additional iterative algorithm, that estimates the

static nonlinearity and linear element are sequentially. This method identifies the

coefficients representing the static nonlinearity and reflex dynamics iteratively and

is guaranteed to converge to the true values under general conditions [172, 151]

Third, an Ordinary Least-Squares (OLS) algorithm used to estimate the reflex

linear dynamics will give biased estimates if the noise is not white [101]. To avoid

this, we use an instrumental variable approach, that provides unbiased estimates of

the model parameters even in the presence of non-white noise [177, 218].

Finally, the identification algorithm assumes that the parameters’ time-course is

repeated periodically so that it is possible to measure multiple trials presenting the

same time-varying behavior. The algorithm exploits the periodicity and estimates

only one period of the model parameters’ time-course using multiple cycles of the

input and output data. This algorithm combines two different methodologies for TV
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identification: temporal expansion and ensemble approaches. This hybrid identifi-

cation algorithm was recently introduced by us, and simulation results showed that

it can track faster changing parameters than the temporal expansion method and

requires significantly less data than the ensemble approach [218].

Identification algorithm

assume that n cycles, each with N data points, of joint position and torque

were measured for both the un-perturbed and perturbed joint trajectories. The

perturbation position and torque signal are computed by aligning and subtracting

the measured position and torque signals during the perturbed and un-perturbed

experiments. Following eq. (7.2), the noise-free perturbation torque for n cycles can

organized in matrix form as

»
————–

TQpt1u

...

TQptnu

fi
ffiffiffiffifl

“

»
————–

TQIt1u

...

TQItnu

fi
ffiffiffiffifl

`

»
————–

TQRt1u

...

TQRtnu

fi
ffiffiffiffifl

`

»
————–

TQ∆t1u

...

TQ∆tnu

fi
ffiffiffiffifl
, (7.11)

where

TQptju “ rTQpp1qtju ¨ ¨ ¨TQppNqtjusT ,

is the perturbed torque for the j-th cycle. The identification algorithm assumes

that intrinsic and reflex dynamics have the same time-varying behavior in each cycle

so that the model parameters are periodic. In contrast, TQ∆ptkq is assumed to

be different for each cycle, consequently, the parameters describing this torque are

different for each cycle.

The identification algorithm proceeds as follows:

161



1. Initialize

yTQItju “ yTQRtju “ O, j “ 1, ¨ ¨ ¨ , n.

2. Estimate the TQ∆ for each cycles as

ĄTQ∆tju “ TQptju ´
´

yTQItju ` yTQRtju
¯

- Use ĄTQ∆tju and the linear, identification algorithm introduced in [216] to estimate

ρ̂A. The algorithm estimates a new set of coefficients for each cycle.

- Use the identified parameters to update the estimate of yTQ∆tju for each cycle.

3. Estimate the intrinsic torque as

ĄTQItju “ TQptju ´
´

yTQRtju ` yTQ∆tju
¯

- Use the estimated intrinsic torque, the perturbation position and the identification

algorithm introduced in [216] to estimate ρ̂I . The algorithm estimates one single set

of coefficients using all the cycles assuming periodicity in the joint trajectory.

- Use the identified parameters and the perturbation position to update the estimate

of yTQItju for each gait cycle.

4. Estimate the reflex torque as

ĄTQRtju “ TQptju ´
´

yTQItju ` yTQ∆tju
¯

- Use the estimated reflex torque, the perturbation velocity and the identification

algorithm introduced in [172] to estimate ρ̂R. The algorithm estimates one single

set of coefficients using all the cycles assuming periodicity in the joint trajectory.

- Use the identified parameters and the perturbation velocity to update the estimate

of yTQRtju for each cycle.
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5. Compute the net predicted torque for all the gait cycles as

yTQptju “ yTQItju ` yTQRtju ` yTQ∆tju

and calculate the percentage of variance accounted for (%V AF ) between the pre-

dicted and measured torque signals as

%V AF “ max

»
—————–
0,

tk“N˚nÿ

tk“1

´
TQpptkq ´ yTQpptkq

¯2

tk“N˚nÿ

tk“1

pTQpptkqq2

fi
ffiffiffiffiffifl
,

where N ˚ n is the total length of the data record.

6. The procedure is repeated from step 2 until successive iterations fail to improve

%V AF .

The identification algorithm provides estimates of the intrinsic (yTQIptkq), reflex

(yTQRptkq) and additional (yTQ∆ptkq) torques, along with the model parameters ρ̂I

and ρ̂R.

7.3 Simulation Study

7.3.1 Methods

The utility of the new algorithm was evaluated using simulations of TV, dynamic

ankle stiffness throughout the gait cycle.

Simulated model

Fig. 7–2 presents the TV, joint dynamic stiffness model. The intrinsic stiffness

was simulated as a time-varying, continuous-time, second-order system. The reflex

stiffness as a series connection of a delay, fixed to 40ms, a differentiator, and a

Hammerstein system; the TV, static-nonlinearity was given by a half-wave rectifier
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Figure 7–2: Simulated, TV, Parallel-Cascade model. Intrinsic dynamic stiffness was
modeled as a TV, second order, continuous-time system, and reflex dynamic stiffness
was modeled as a Hammerstein system with TV static-nonlinearity followed by a
second order, continuous-time system.

with a TV threshold (thptkq) and the reflex, linear dynamics was a continuous-time,

second-order system.

Model parameters

Fig. 7–3 show the time-course of the simulated parameters as a function of the

gait cycle.

The top three panels in the left column of Fig. 7–3 show the time-course of

the intrinsic stiffness parameters, these values were originally reported by Lee et.

al [125].
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Figure 7–3: Simulated time-varying model parameters as a function of gait cycle.
Top three panes - Left column: Intrinsic Stiffness (K), viscosity (B), and inertia
(I). - Right column: Reflex gain (G), natural frequency (ω), and damping (ζ).
Bottom panel presents the reflex static-nonlinearity with the red line showing the
TV threshold. Vertical lines divide the gait cycle in its sub-phases starting at heel-
strike: early stance (ESP), mid-stance (MSP), terminal stance (TSP), pre-swing
(PSP), and swing phase (SWP).

The top three panels in the right column of Fig. 4–3 show the linear, reflex dy-

namics parameters. The reflex gain was originally reported by Sinkjaer et. at [207],

whereas the simulated reflex natural frequency and damping were generated by in-

terpolating results from static experiments with matched position [64]. Finally, the
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bottom panel of Fig. 4–3 shown the reflex static-nonlinearity. The TV threshold

was selected to change significantly during the stance phase of walking, where the

reflex gain is largest, and to remain constant at zero during the pre-swing and swing

phases.

Input

Fig. 7–4A shows the input sequence, corresponding to a Pseudo Random Arbi-

trary Level Distributed Signal (PRALDS) with a random switching rate drawn from

a uniform distribution between 250ms and 350m, and a peak-to-peak amplitude of

0.06 rad. The PRALDS has velocities distributed over the whole range of possi-

ble values and so it provides a rich set of values with which to estimate the reflex

static-nonlinearity [156].
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Figure 7–4: Typical simulation results: A) Joint position input, B) experimental
noise and C) joint torque output.

Noise

Fig. 7–4B shows the noise used in the simulations. It was obtained from a

library of experimental signals of ankle torque recorded while subjects maintained a

constant torque with fixed ankle position [173]. The library comprised 100 records

each lasting 60s, from six subjects generating dorsiflexing torques corresponding to

5%, 10% and 15% of their maximum voluntary torque. For each simulation trial,

a section of the recorded torque noise was selected at random and its mean was

removed. This noise signal is composed of a low-frequency trend (corresponding
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to TQ∆ptkq), physiological tremor, 60Hz noise, and white-Gaussian measurement

noise [173, 174]. The noise amplitude was adjusted to give an average signal-to-

noise ratio (SNR) of 20dB across the record. The SNR is lower than expected

experimentally, which has been shown to be around 40 dB [219].

Simulation

Fig. 7–4C shows the noise-free output, produced by the sum of the simulated

intrinsic and reflex torques. The model was simulated using Simulink (the Math-

Works) using a third order solver with a sampling rate of 1KHz. Each simulated

step lasted for 1.4s, which is equivalent to slow walking [207]; 40 gait cycles were

simulated so that each trial lasted for 56s. Afterwards, perturbation position and

torque were decimated to 100Hz for analysis.

The 56s trial was repeated 100 times with a new input and noise sequence to

compute statistical properties of the parameter estimates.

7.3.2 Basis functions

Cubic B-splines were selected as basis functions to represent the coefficients of

the intrinsic TV-IRF (tΛjptkquj“nλ

j“0 ); the TV, reflex static-nonlinearity (tΓjptkqu
j“nγ

j“0 );

and the numerator of the TV, reflex linear dynamics (tΨjptkqu
j“nβ

j“0 ). The B-splines

knots were uniformly distributed along the gait cycle, 10 basis functions we used to

represent each TV parameter. The number of basis was selected as the minimum

order necessary to describe the true TV parameters with a variance accounted for of

at least 99%.

Tchebichev polynomials were selected as basis functions to represent the co-

efficients in the denominator of the TV, reflex linear dynamics (tΠjptkquj“nα

j“0 ) and
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TQ∆ptkq (tPjptkqu
j“np

j“0 ). Polynomials of order 0 to 7 were used to represent the de-

nominator of the TV, reflex linear dynamics, whereas polynomials of order 0 to 4

were used to represent TQ∆ptkq.

Tchebichev polynomials were used as Kernels to represent the reflex, static-

nonlinearity (tCjp 9θpptkqquj“nc

j“0 ). There are some advantages of using this type of

Kernels: i) the first-order Kernel is linear, C1p 9θpptkqq “ 9θpptkq, so that the estimated

parameters can be used to validate whether a nonlinear model is needed or not; and

ii) the variance of the output is finite in its support, which guarantees the numerical

stability of the estimation process. Polynomials of order 0 to 4 were used as Kernels

to approximate the TV static-nonlinearity.

7.3.3 Estimated parameters

Table 7–1: Number of free parameters in simulated and estimated models

Simulated model Estimated model

(TV coefficients) (TI coefficients)

Intrinsic linear dynamics 3 90

Reflex static-nonlinearity 1 40

Reflex linear dynamics 3 34

Additional torque - 200

Table 7–1 presents the number of parameters in the simulated and estimated

models, showing that the proposed re-parametrization transforms the low-order, TV

modes, whose parameters cannot be directly estimated into high-order, TI mod-

els, whose parameters can be easily estimated using linear identification algorithms.
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TQ∆ptkq was approximated with 5 coefficients at each cycle, so that a total of 200

coefficients were estimates in the 40 cycles.

A property of the Hammerstein systems is that the gain can be arbitrarily

assigned to the static-nonlinearity or the linear dynamic element without affecting

the output. For consistency, we decided to assign the gain of the reflex pathway to

the static-nonlinearity, fixing the linear dynamics gain (Gptkq) to unity.

7.3.4 Validation

The predictive ability of the estimated model was quantified in terms of the

Variance Accounted For (VAF) between the predicted and simulated intrinsic and

reflex torques. An average-VAF was computed using all the data for each simulation

trial as shown in step 5 of the identification algorithm. In addition, a TV-VAF was

computed, this measure was obtained by dividing each gait cycle into 20 segments

and computing the VAF between predicted and simulated signals for each segment.

As it is difficult to compute the intrinsic viscosity and inertia directly from the

estimated TV-IRF, the simulated and estimated intrinsic, TV models were compared

in terms of their time-frequency response, that were calculated for the parametric

and non-parametric models [136]. Moreover, the TV intrinsic elasticity (K) was

computed, by summing the elements of the estimated IRF at each point in time, and

compared with the simulated parameter.

The shape of the estimated reflex, TV, static-nonlinearity (which includes the

reflex gain) was compared with the simulated TV, half-wave rectifier. The TV, reflex

natural frequency (ω) and damping (ζ) were computed directly from the estimated,

discrete-time parameters and compared with the simulated parameters.
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Time-invariant, dynamic joint stiffness model

For comparison purposes, a time-invariant (TI), dynamic joint stiffness model

was estimated between the perturbation position and noisy torque signals using the

all the cycles. The TI, intrinsic and reflex model parameters were estimated using

the new algorithm by fixing the basis functions used to represent the intrinsic a reflex

models coefficients to be a single basis, given by an all-ones vector.

7.3.5 Results
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Figure 7–5: TV-VAF between the noise-free torque and the output of the time-
invariant (red lines) and time-varying (blue lines) models, each bar presents the
mean, 5th and 95th percentile computed for the 4000 simulated gait cycles. A)
Intrinsic torque, and B) reflex torque.
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Time-invariant results

The TI model did a poor job at predicting the simulated data, the average-VAF

was always lower than 70% for both intrinsic and reflex torques. Furthermore, Fig. 7–

5 presents the TV-VAF obtained for the 4000 simulated gait cycles. Is clear that the

TI models were not able to capture the time-varying system dynamics, indicating

the need for TV models.

Time-varying results

The TV model predicted the output extremely well, the average-VAF was always

larger than than 99% for both intrinsic and reflex torques. Fig. 7–5 shows that the

TV-VAF for the intrinsic and reflex torques was always greater than 97%; the lowest

values were observed around the pre-swing and early-swing phases of the cycle, where

the gain of the intrinsic and reflex pathways are smallest.

TV intrinsic dynamic stiffness

Fig. 7–6A presents the simulated (red) and estimated (blue) intrinsic elasticity,

demonstrating that the estimated parameter tracked the true values very closely in

all the 100 trials. Furthermore, the bottom panels of the figure present snapshots

at different landmarks of the gait cycle of the time-frequency response for both the

estimated TV-IRF (blue lines) and the simulated, second-order model (red lines).

There was a remarkable similitude in the time-frequency response of the estimated

and simulated systems up to around 30 Hz, corresponding to the input’s band-width,

with the results obtained in the 100 simulations falling very close to the simulated

system frequency response.
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are indicated in the top panel with vertical lines and correspond to: the beginning of
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middle of the swing-phase.

TV reflex dynamic stiffness

The top four panels of Fig. 7–7 present snapshots at different landmarks of the

gait cycle of the estimated and simulated TV static-nonlinearity. As the different

173



panels demonstrate, the estimated, polynomial static-nonlinearity was able to accu-

rately track both the TV threshold and slope of the simulated half-wave rectifier.

The bottom panels of the figure shown the simulated and estimated natural fre-

quency and damping of the reflex, linear dynamics model, demonstrating that the

estimated parameters tracked the true values closely. The reflex damping was slightly

underestimated; however, this did not significantly affected the VAF.
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7.4 Experimental Study
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Figure 7–8: Typical data recorded during a un-perturbed (blue lines) and perturbed
(brown lines) gait cycle. A) Ankle trajectory, B) Soleus EMG and C) ankle torque.

The utility of the new TV, identification algorithm was demonstrated by es-

timating the ankle dynamic stiffness during an imposed walking movement with

constant voluntary torque from measured joint position and torque data acquired

from one healthy subject, who provided written informed consent. The experiment

was approved by the McGill University Research Ethics Office.

176



7.4.1 Experimental methods

The subject lay supine with his left foot attached to the pedal of an electrohy-

draulic actuator operating as a position servo by means of a custom made fiberglass

boot [12]. The ankle movement was restricted to plantarflexion and dorsiflexion.

Ankle position, torque, and surface EMG from the medial and lateral gastrocne-

mius (GM and GL), soleus (SOL) and tibialis anterior (TA) were measured, filtered

at 400Hz to prevent aliasing and sampled at 1kHz by a 16-bit A/D converter. Data

were decimated to 100Hz for analysis.

During the experiment, the actuator moved the ankle to zero position (i.e.,

there was a right angle between the foot and shank) and held there for a one minute.

Then, a un-perturbed ankle trajectory consisting of 30 gait cycles, each lasting for

2 s, was applied. This experiment was repeated 2 times to obtain a total of 60 un-

perturbed gait cycles. The experiment was then repeated but this time a perturbed

ankle trajectory was applied. The perturbed trajectory was obtained by adding a

PRALDS, similar to that used in the simulation study, to the walking trajectory.

The subject was required to maintain a constant plantarflexion torque corre-

sponding to 10% of his maximum torque but not react to the imposed movement.

For this, the subject was presented with a visual feedback consisting of a low-pass

filtered (0.7Hz) version of the measured torque minus the passive torque produced

during the un-perturbed ankle trajectory, which was measured beforehand. The

subject was allowed to train for several minutes before the beginning of the trial.

Perturbed and un-perturbed ankle trajectories and torque signals were sub-

tracted to compute the perturbation position (θpptkq) and torque (TQpptkq). Data
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was then divided into identification and validation segments; 40 gait cycles were

used for parameters estimation and the remaining 20 cycles for model validation.

The model was validated by computing the average-VAF between the measured and

predicted torques for the validation data.

Fig. 7–8 shows the perturbed and un-perturbed ankle trajectories, soleus EMG,

and ankle torques measured during one imposed gait cycle. Furthermore, top panels

of Fig. 7–9 present with blue lines the perturbation position (θpptkq) and torque

(TQpptkq) signals for two gait cycles.

7.4.2 Results

Time-invariant results

An estimated TI model did a poor job at predicting the measured data, the

average-VAF was always lower than 75%. This result indicate the need for a TV

model to capture the system dynamics.

Time-varying model

An estimated TV model predicted the measured torque very well, the average-

VAF for the validation trials was always larger than 95%. Fig. 7–9B presents the

predicted total torque for two of the validation gait cycles with a brown line. For

these particular cycles, the average-VAF was 96%. The good agreement between

the measured and predicted torques indicates that the estimated model was able to

accurately capture the system dynamics. In addition, panels C, D and E of the same

figure present the predicted intrinsic,reflex and TQ∆ptkq as a function of time.
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TV intrinsic dynamic stiffness

The parameters of the TV-IRF used to represent the intrinsic dynamic stiffness

underwent large, fast changes throughout the gait cycle. Fig. 7–10A presents the

variation in the intrinsic elasticity, which was computed directly from the TV-IRF,
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along with the 95% confidence interval, computed by applying a bootstrap analysis

with 100 repetitions [193]. The intrinsic elasticity increased three fold (from 30

Nm/rad to 90 Nm/rad) during the stance phase, and sharply decreased during the

pre-swing phase (to around 20Nm/rad). Then, it returned to its initial value and

remained constant throughout the swing phase.

In addition, Fig. 7–10C presents the intrinsic elasticity as a function of ankle

position. This plot indicates that: i) the intrinsic elasticity is larger in plantarflexion

than dorsiflexion; ii) the relation between joint position and intrinsic elasticity is

nonlinear and seems to be influenced by the phase of the gait cycle.

Furthermore, the upper pathway of Fig. 7–11 shows the time-frequency response

of the TV-IRF as a function of the gait cycle. The purple line indicated the ankle

elasticity. The intrinsic dynamic stiffness showed a high-pass behavior, typically

observed during stationary experiments [212], and underwent large, fast changes

throughout the gait cycle
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TV reflex dynamic stiffness

The parameters of the polynomial nonlinearity used to represent the reflex,

static-nonlinearity underwent large, fast changes throughout the gait cycle. Fig. 7–

10B presents the variation in the reflex gain, computed as the slope of the static

nonlinearity, along with the 95% confidence interval. The reflex gain increased two
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fold (from 6 Nm/rad/s to 12 Nm/rad/s) during the stance phase, and decreased to

almost zero during the pre-swing phase. Then, it increased and remained constant

throughout the swing phase.

In addition, Fig. 7–10D presents the reflex gain as a function of ankle position.

This plot indicates that: i) the reflex gain is larger in plantarflexion than dorsiflexion;

ii) the relation between joint position and reflex gain is nonlinear and seems to be

influenced by the phase of the gait cycle.

Furthermore, the parameters of the second-order, linear system used to represent

the reflex, linear dynamics did not vary significantly. The lower pathway of Fig. 7–

11 shows the TV, static-nonlinearity as a function of gait cycle and the frequency

response of the reflex linear dynamic model. The estimated static-nonlinearity re-

sembles a half-wave rectifier; the gain underwent large, fast changes throughout

the gait cycle. The linear dynamics, which presents a low-pass behavior, did not

vary throughout the gait cycle. The shape of the static nonlinearity and the cut-off

frequency of the linear dynamic element coincide with what has been observed in

stationary experiments [212].
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7.5 Discussion and Conclusions

This paper presents a new model parametrization and identification algorithm

for the accurate estimation of the intrinsic and stretch reflex components of TV dy-

namic joint stiffness. The algorithm combines ensemble and deterministic approaches

to estimate the parameters of the TV model from position and torque records. Sim-

ulations demonstrated that the new algorithm successfully decomposed the dynamic

joint stiffness into its intrinsic and reflex components from position and total torque

signals, and accurately tracked the fast, large changes in the parameters of each
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pathway using as few as 40 gait cycles even in the presence of experimental noise.

Furthermore, the method was successfully applied for dynamic joint stiffness esti-

mation during an imposed walking experiment. The good agreement between the

predicted and measured torques demonstrated that the new methodology was able

to accurately describe the overall TV, ankle dynamic stiffness.

7.5.1 Methodological issues and limitations

Methods that estimate TV, joint dynamic stiffness make three underlying as-

sumptions: i) The small perturbations applied to the joint do not modify the op-

erating point [12]; ii) the mechanical response of the joint to small perturbations

and to large changes in the operating point, such as the changes in the joint tra-

jectory observed during the experimental trial, are linearly superimposed [70]; and

iii) the system dynamics, which changes as a function of the operating point, can

be described by a set of frozen, local models at each point in time [106]. The good

agreement between the predicted and measured torques suggests that these assump-

tions hold for the type of movements produced during slow walking. It remains to

be validated if this assumptions are valid during fast movements such as running.

Our methodology leverages on these assumptions and introduces a novel param-

eterization of the parallel-cascade model where the time-course of the frozen, local

models parameters is approximated by a linear combination of basis functions, effec-

tively transforming the TV model into a set of TI models at the cost of increasing

the number of free parameters. This points out two of the main limitations of the

identification algorithm:
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First, the type and number of basis functions used to parametrize the TV coeffi-

cients must be known a priori. The quality of the parameter estimates will depend on

selecting a set of basis functions capable of efficiently describing the TV parameters

changes. In this study B-splines and Tchebichev polynomials were used to represent

the parameters variation. Both basis functions are well suited for describing smooth

changing parameters; however, B-splines are commonly used to approximate fast

changing parameters, whereas Tchebichev polynomials are commonly used to ap-

proximate very-low-frequency trends. For parameters undergoing sharp transitions;

another set of basis functions, such as Haar wavelets, which are formed as a sequence

of rescaled ”square-shaped” functions, would be more appropriate.

Second, as the number of free-parameters is significantly increased, the identi-

fication algorithm requires large data sets for accurate parameter estimation. This

limitation was addressed here by combining the basis function expansion with an en-

semble identification approach, which assumes that there are multiple, input-output

trials showing the same TV behavior. However, compared with ensemble-only identi-

fication methods, our algorithm requires significantly less repetitions. This reduction

in data requirement translates into much shorter experiments which makes it easier

to acquire enough trials with the same TV behavior.

Finally, the algorithm relies on the reflex response delay to accurately separate

the intrinsic and reflex components from the measured position and torque data.

Furthermore, it is assumed that the delay remains constant throughout the gait

cycle. The reflex day was measured using joint velocity and EMG signals, and no

modulation with the gait cycle was found. However, this observation is only valid
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for the particular experimental conditions analyzed here; if these change, then this

assumption must be validated under the new conditions.

7.5.2 Simulation study

System identification methods are often validated using idealistic input and

noise sequences. However, the performance of these algorithms might degrade when

applied to experimental data, with non-ideal inputs and non-zero mean, non-white

noise. Our simulation was intended to mimic real experiments, with model pa-

rameters based on those reported in the literature, non-ideal inputs with limited

bandwidth, and experimental, non-white noise sequences. Doing so guarantees that

the results obtained in the simulations are more relevant to experimental conditions.

The simulated, intrinsic time-frequency response was fully captured by the esti-

mated model up to around 30Hz, which corresponds to the input’s band-width. The

gain and threshold of the simulated half-wave rectifier were also accurately tracked

by the estimated polynomial nonlinearity. The large variability in the polynomial

nonlinearity for large velocities is likely related to the fact that the amplitude dis-

tribution of the velocity signal is highly concentrated around zero, so that there is

little information about the nonlinearity’s shape for high velocities [156]. Finally,

the reflex, natural frequency was accurately estimated, while the reflex damping was

slightly underestimated. However, this did not affect the prediction ability of the

estimated models, indicating that the model output is not very sensitive these small

differences in the damping.
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7.5.3 Experimental study

Application of the new methodology allowed us to estimate the intrinsic and

reflex ankle dynamic stiffness during an imposed walking movement from measured

ankle position and torque data. Results showed that the proposed model structure

was able to accurately predict the output torque to novel perturbation sequences,

indicating that the estimated model successfully captured the TV, nonlinear dynam-

ics.

The intrinsic elasticity underwent drastic changes during the imposed gait cycle,

showing a significant increase during the stance-phase and a stepped decrease during

the pre-swing phase. The reflex gain showed a similar behavior, increasing during the

stance-phase and then returning to its original value during the pre-swing and swing

phases. Similar to stationary experiments results, the intrinsic elasticity and reflex

gain observed during the imposed movement were heavily modulated by the ankle

angle; however, their values were also dependent on the phase of the gait cycle. These

results indicate that past values of the ankle trajectory influence its neuromechanical

properties.

The other components of the reflex pathway did not show any significant change.

However, this result might be caused by the relatively small amplitude of the reflex

torques compared to the intrinsic torques, which limits the ability of the algorithm

to capture the variation in the reflex parameters.

Finally, even though the results presented here were acquired from simulated

walking experiments, the modulation in intrinsic and reflex stiffness seem functionally

appropriate. The increase in stiffness occurs in the portion of the cycle when only
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one leg supports the body. Thus, an increased ankle stiffness, which increases the

joint stability, seems appropriate. Afterwards, both legs support the body so that

the large ankle stiffness is no longer necessary. Finally, during the swing phase, the

leg is no longer used for support so the intrinsic and reflex stiffness remain low and

constant.

We conclude that the new algorithm will be a useful tool in the study of joint dy-

namic stiffness during TV conditions and that it will help further the understanding

of the modulation of this system during function.
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CHAPTER 8
Discussion and Conclusions

The four studies described in this thesis were motivated by the desire to measure

the neuromechanical properties of joints and their modulation during function. Such

measurements would have an important impact in several research fields. The ability

to characterize join neuromechanics during function would advance motor control re-

search by providing evidence needed to test different hypothesis regarding the neural

control of movement. It would also lead to better understanding of neuromuscular

diseases and to development objective measurements to asses the effectiveness of

treatment. Furthermore, the it would lead to significant improvements in prosthet-

ics and orthotic devices and would be important in the development of robots that

are capable of interacting with humans and the environment in a natural, compliant

manner.

The neuromechanical properties of joints can be characterized in terms of dy-

namic joint stiffness, that describes the relation between joint position and torque.

Dynamic joint stiffness composed of intrinsic and reflex stiffness acting in parallel.

Intrinsic stiffness arises from the mechanical properties of the joint, passive tissue,

and active muscle, and can described by a linear, TV model relating joint position

and intrinsic torque. Reflex dynamic stiffness arises from changes in muscle activa-

tion due to the excitation of the short-latency stretch reflex, and can be described

by a nonlinear, TV, Hammerstein model, made up of a series connection of a TV
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static-nonlinearity and a linear, TV system, relating joint velocity and reflex torque.

These mechanisms act and change together so their individual contributions to dy-

namic joint stiffness cannot be measured directly.

In this thesis, I applied mathematical models and systems identification tech-

niques to measurements of joint position and total torque made during function to

analytically separate the torques due to intrinsic and reflex mechanisms. These meth-

ods make it possible for the first time to characterize the neuromechanical properties

of human joints during function. This will provide information that is essential to

understand the neural control of posture and movement, to objectively characterize

mechanical consequences of neuromuscular diseases, and to the develop biomimetic

prosthetics and orthotic devices.

8.1 Identification algorithms

8.1.1 Identification of linear, time-varying systems

Linear, time-varying (LTV) systems play a vital role in describing the neurome-

chanical properties of human joints during function. The relation between joint

position and intrinsic torque can be fully described by a LTV systems, and that

of the joint position and reflex torque can be described by a series connection of a

static nonlinearity and a LTV system. Consequently, accurate identification of LTV

systems a basic requirement for measuring the neuromechanical properties of joints

during function.
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Time-varying parametric models

Chapter 4 develops and validates a new algorithm to identify time-varying, Box-

Jenkins models. This model structure is characterized by an independent parametriza-

tion of the systems and noise plants, which makes it useful for modeling biomedical

systems whose output is usually contaminated by complex, non-white noise. The

technique combines two approaches for TV systems identification: temporal expan-

sion and ensemble methods. In contrast to classical temporal expansion algorithms,

which are limited to systems whose parameters vary slowly with time, and classical

ensemble algorithms, which require data sets with hundreds of input-output realiza-

tions presenting the same TV behavior, this hybrid technique can track fast, large

changes in the model parameters using relatively few short, periodic, input-output

trials.

This hybrid technique also inherits the limitations of both the ensemble and

temporal expansion approaches: First, the method requires that all trials in the

ensemble present the same TV behavior, acquiring such data may be difficult experi-

mentally. However, the efficiency of the algorithm, which allows it to deliver reliable

estimates with relatively few trials, makes acquiring the data much less demanding

than classical ensemble methods. Secondly, the quality of the parameter estimates

will depend on selecting a set of basis functions capable of efficiently describing the

TV parameters changes. Here, I used cubic B-splines and Tchebychev polynomials;

these basis functions are well suited to describe the smooth changes in the systems

dynamics observed in the experimental conditions studied here. However, these basis

functions would not be appropriate if the parameters underwent sharp transitions;
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another set of basis functions, such as Haar wavelets, would be more appropriate

for such a case. The selection of the best basis functions is an open research prob-

lem, and is often necessary to test a variety of basis functions to select the set most

appropriate for a specific task.

Furthermore, the new algorithm uses an instrumental-variable approach for pa-

rameter estimation that guarantees that the parameter estimates will be unbiased

even when the output contains significant levels of complex, non-white noise. This

represents a clear advantage over classical least-squares methods that produce bi-

ased parameter estimates when the output noise is not white. Simulations results

demonstrated that the algorithm accurately tracked the modulation of the intrinsic

joint compliance during a periodic movement using as few as 5 cycles of input-output

data contaminated with significant levels of realistic noise. This represents a sub-

stantial improvement over the classical ensemble algorithm used in previous studies

that require hundreds of cycles to track the parameters modulation throughout a

movement [110]. This dramatic reduction in data requirements translates into much

shorter experiments making it much easier to acquire trials with the same TV be-

havior. It also facilitates studies of joint neuromechanics in patients suffering from

neuromuscular diseases, who typically have limited endurance and are not able to

withstand the long, fatigue inducing experiments that were required in the past.

Time-varying non-parametric models

Parametric models, and in particular Box-Jenkins models, are adequate to de-

scribe biomedical systems when the model order is known, the usefulness of the

results depends on the validity of the selected model order. Alternatively, when the
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order of the system dynamics is not known, the input-output relation can be de-

scribed by a non-parametric model, which does not require the definition of a model

order. However, non-parametric models usually have more free parameters than

parametric models, so that when the order of the system dynamics is known, para-

metric models provide a more parsimonious representation of the system dynamics

and is easier to provide a physical interpretation to the estimated parameters.

Chapter 5 develops and validates a new algorithm to identify linear, time-

varying, non-parametric models. This algorithm combines the temporal expansion

and ensemble approaches for parameter estimation and therefore can track fast, large

changes in the model parameters using just a few periodic input-output segments of

short duration. Furthermore, this method uses a Bayesian identification algorithm

for parameter estimation. This identification procedure imposes a ridge regulariza-

tion that forces the parameters associated to unnecessary basis functions to zero so

they can be discarded, this reduces the number of free-parameters in the model,

lessening the data requirements for parameter estimation.

The hybrid algorithm for identification of linear, time-varying, non-parametric

models suffer from similar limitations that those discussed in the parametric model

identification. The algorithm requires an ensemble of input-output trials presenting

the same TV behavior, and the quality of the parameter estimates depends on the

appropriate selection of basis functions.

8.1.2 Identification of time-varying Hammerstein systems

Hammerstein systems, the series connection of a static-nonlinearity and a linear

dynamic systems, combine the simplicity of linear systems with the generalization
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capacity of nonlinear systems. Therefore it does not come as a surprise that many

physical systems can be described well by Hammerstein models. In particular, reflex

stiffness, the relation between joint velocity and reflex torque, can be described by a

Hammerstein system [12]. There is strong evidence that the gain of the system, the

sensitivity of the spindle and the muscle’s dynamic response are modulated by joint

position, background torque and other factors [11, 59, 62] so that during function,

reflex stiffness must be described by a time-varying, Hammerstein systems.

Chapter 6 develops and validates a new algorithm for identification of TV, Ham-

merstein systems. The algorithm approximates the static-nonlinearity using a linear

combination of basis functions, this transforms the single-input, single-output non-

linear model into a multiple-input, single-output, linear model. The parameters

corresponding to the static-nonlinearity and linear dynamic system are estimated

sequentially using the algorithms developed in chapters 4 and 5. The new algorithm

improves on previous methods in several ways: i) it does not require the inversion of

the static-nonlinearity, so that it can estimate the shape of any static-nonlinearity,

not only those that can be inverted, and ii) is guaranteed to converge under gen-

eral conditions, so that it does not require white, Gaussian inputs to yield unbiased

parameter estimates. Simulations demonstrated that the algorithm provides unbi-

ased estimated of the TV static-nonlinearity and linear dynamic elements even in

the presence of physiological noise. However, as the algorithm is based on the meth-

ods introduced in Chapters 4 and 5, it inherits its limitations, namely, it requires

an ensemble of input-output trials presenting the same TV behavior for accurate
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parameter estimation, and the quality of the parameter estimates depends on the

appropriate selection of basis functions.

8.1.3 Identification of time-varying parallel-cascade systems

Chapter 7 develops and validates a new algorithm to estimate joint dynamic

stiffness during function. This algorithm combines the methods developed in Chap-

ters 4, 5 and 6 to estimate the intrinsic and reflex components of dynamic joint

stiffness from position and total torque measurements. The algorithm finds an ini-

tial estimate of intrinsic stiffness and with it predicts the intrinsic torque, this is

then removed from the measured torque and the residuals are used to estimate the

reflex stiffness. This model is then used to predict the reflex torque, which is then

removed from the total torque and the residuals are used to update the intrinsic stiff-

ness model. The algorithm iterates until there are no further changes in the model

parameters. Simulations showed that the new algorithm successfully decomposed

the overall joint torque into its intrinsic and reflex components from position and

total torque signals with significant levels of experimental noise.

As the algorithm is based on the methods introduced in chapters 4, 5 and 6,

it inherits its limitations, namely, it requires an ensemble of input-output trials pre-

senting the same TV behavior for accurate parameter estimation, and the quality

of the parameter estimates depends on the appropriate selection of basis functions.

Furthermore, though the two estimation steps involved in the algorithm are guar-

antee to converge to the true values under general conditions, the overall iterative

algorithm might suffer from converge issues. However, extensive practical experience

has shown that the algorithm fails to converge only when the reflex contribution
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to the overall torque is significantly smaller than that of the intrinsic mechanisms.

This situation, which seems to be common during movement [59], will require other

specialized methods that are under development.

8.2 Simulation issues

Systems identification algorithms are often validated using idealistic simulations

that use ideal inputs with power in all the frequencies of interest, and zero-mean,

white noise. Furthermore, model parameters are often selected to obtain the best

performance of the identification algorithm. However, the performance of these al-

gorithms might degrade when applied to experimental data, with non-ideal inputs

and noise.

The algorithms presented here were validated using realistic simulations, in-

tended to mimic real experiments. These simulations used non-ideal inputs with

limited band-width, non-zero mean, non-white, noise that was acquired experimen-

tally, and the model parameters were based on values recently reported in the lit-

erature [64, 65, 109, 110, 125, 220]. Results presented in this thesis demonstrated

that the utility of the identification algorithms must be evaluated using realistic sim-

ulations. Chapter 4 showed that the %V AF between the prediction of the classical

TV-ARX identification algorithm and the output of the idealistic simulation was

always larger than 99.5%; however, when a realistic simulation was used, the %V AF

decreased to 84%, consistent with the poor quality of the parameter estimates.

The model parameters time-trajectories were delivered from those reported by

Rouse et.al [109] and Lee et. al [110, 125] for the gait cycle. The values were

then adjusted to match those previously found in quasi-stationary experiments that
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were performed in the same experimental device used in this thesis, that involves

subjects lying supine with their left foot attached to the pedal of an electrohydraulic

actuator operating as a position servo [64, 65, 220]. However, during walking, the

joint elasticity is significantly larger that the values used in our simulations, likely due

to the activation of the leg muscles to support and propel the body. Consequently, to

validate that the new algorithms for identification of ankle compliance, introduced

in Chapter 4, and intrinsic ankle stiffness, introduced in Chapters 5 and 7, can

estimate the ankle mechanical properties during walking, I performed a simulation

study with increased values of joint elasticity.

Fig. 8–1 and 8–2 present the results of estimating the intrinsic joint compli-

ance using the parametric method introduced in Chapter 4 and the intrinsic joint

dynamic stiffness using the non-parametric method introduced in Chapters 5 and 7.

The simulated model was identical to that reported by Lee et. al for a 70kg sub-

ject [125]. Input and noise sequences are the same as those given in Chapters 5 and

7, the SNR was adjusted to give an average value of 10dB. The excellent agreement

between simulated and estimated model parameters presented in Fig. 8–1 and 8–2

demonstrate that the algorithms for identification of linear, time-varying systems can

be potentially used to estimate the time-varying mechanical ankle properties during

walking.

8.3 Experimental results

The algorithms presented in this thesis were used to estimate the dynamic an-

kle stiffness during an imposed, periodic movement. The results from these pilot

experiments demonstrated for the first time, the accurate estimation of the ankle
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Figure 8–1: TV intrinsic joint compliance parameters estimated with the TV-BJ
identification algorithm introduced in Chapter 4, simulated parameters values (red)
are similar to those observed during walking, estimation results of 100 Monte Carlo
trials (blue) followed closely the true parameters.

neuromechanical properties during functionally relevant situations. These results

demonstrates a true TV behavior in the joint neuromuscular properties, and not

just a static-nonlinear dependency on joint position, as has been previously as-

sumed [105, 221].

Two different experiments were performed: first, the ankle was displaced in a

walking trajectory while the subject was relaxed. Second, the ankle was displaced in

a walking trajectory while the subject was exerting a constant level of torque using

the ankle flexors.
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Figure 8–2: Intrinsic dynamic stiffness estimated with the TV-IRF identification
algorithm introduced in Chapter 5. Top panel :Simulated (red) and estimated (blue)
intrinsic stiffness (Kptkq) during the gait cycle. Bottom four panels: Snapshots of
the time-frequency response of the simulated (red) and estimated (blue) systems at
different moments of the gait cycle, corresponding to A. 10%, B. 30%, C. 50% and
E. 80% of the cycle. Simulated parameters values (red) are similar to those observed
during walking, estimation results of 100 Monte Carlo trials (blue) followed closely
the true parameters.

8.3.1 Imposed movement with relaxed muscles

Intrinsic stiffness

The new algorithm was applied to estimate the dynamic ankle stiffness during

passive movements. Here, the contribution of the reflex mechanisms is negligible so

that the overall ankle stiffness can be described only by the intrinsic component,

which is modeled by a linear, time-varying, non-parametric model. The TV model
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parameters were estimated using only 20 input-output trials, and the predicted out-

put torque accounted for more than 94% of the measured torque variance, demon-

strating that the estimated TV, non-parametric model accurately described the joint

mechanical properties during movement. Results showed that the ankle visco-elastic

properties, change drastically during movement, demonstrating that the joint passive

mechanical properties are heavily modulated by joint position.

These results also demonstrated that joint dynamics stiffness during function

cannot be inferred from stationary experiments at matched operating points. Intrin-

sic stiffness was lower during movement than during constant posture experiments

at matched positions. The discrepancy between time-varying and quasi-stationary

results has been previously reported in experiments with voluntary muscle activa-

tion [106, 107, 124].

The results presented in Chapter 4 were obtained for relaxed muscles only. How-

ever, the origins of passive muscle tension are not fully understood, some suggest that

passive muscles can be described as visco-elastic elements, and that cross-bridges are

not involved in production of passive force [222, 223]. Others have hypothesized that

passive muscle tension is produced by a combination of the muscle’s visco-elastic

properties and by cross-bridges engaged between actin and myosin in resting muscle

fibres [224, 225]. Our results are consistent with the latter hypothesis, since the dis-

crepancy between time-varying and quasi-stationary results can only be explained

by the presence of engaged cross-bridges in the production of passive muscle ten-

sion. Consequently, our results suggest that a simple visco-elastic element does not

adequately describes the passive behavior of skeletal muscle during movement.
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Figure 8–3: Ankle elasticity as a function of gait cycle during imposed walking
movement. A) Relaxed muscles, B) Active extensors muscles, 10% of MVC. Shaded
regions represent the 95% confidence interval. The vertical lines divide the gait cycle
in its different phases starting from heel-strike: early stance, mid-stance, terminal
stance, pre-swing and swing phase.

8.3.2 Imposed movement with muscle activation

Intrinsic stiffness

Fig. 8–3 presents the ankle elasticity as a function of gait cycle estimated during

relaxed (presented in Chapter 5) and active (presented in Chapter 7) experiments

with the same subject. The joint elasticity observed during passive and active exper-

iments shows the a similar trend, increasing during the first portion of the movement,

then rapidly decreasing between 50% and 60% of the cycle, and then staying constant,

at a low value for the remainder of the movement. Joint elasticity estimated with
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Figure 8–4: Ankle elasticity as a function of ankle angle during imposed walking
movement. A) Relaxed muscles, B) Active extensors muscles, 10% of MVC.

constant voluntary torque increased three fold during the simulated stance phase,

while that estimated with relaxed muscles increased four fold. As the cycle duration

in the passive and active experiments was different, and given that the passive prop-

erties of muscles are velocity dependent [224, 226], it is not possible to rule out that

the observed differences are not due to a velocity-dependent effect.

Furthermore, Fig. 8–4 demonstrates that joint elasticity estimated during move-

ment can take different values for the same ankle angle depending on the immediate

history of the movement. For the relaxed experiment, the vertical line in Fig. 8–4A

shows that differences in the ankle elasticity up to 30% were observed, while for

the active experiment, the vertical line in Fig. 8–4B shows that the the ankle elas-

ticity almost doubled for certain angles. These results provide additional evidence

that cross-bridges contribute to the tension during stretch of passive muscle, because

during passive movements, when the number of engaged cross-bridges is small, the
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history dependent effects are small; and when the subject voluntarily activate its

muscles, engaging more cross-bridges, these effects are increased.

Reflex stiffness

Reflex stiffness is generated only by active mechanisms, so that the observed

dependency of stretch reflex responses on the immediate history of contraction and

length changes is expected. Moreover, modulation of reflex stiffness during move-

ment can be attributed to the force-length, and force-velocity relations of active

muscle fibers. However, the fact that reflex EMG was also modulated during the

movement, combined with the observation that the reflex gain reached its maximum

value and started decreasing at least 100 ms before intrinsic stiffness reached its peak

value, suggest that the modulation also arises from neural mechanisms. One possible

mechanisms underlying these changes is the increase in the number of active spindle

afferent when the muscle is lengthened [227, 228]. This could increase the effective

neural gain by bringing additional spindle afferents into the response, producing a

maximum reflex torque ahead of the maximum intrinsic torque, which is influence

by both passive and active mechanisms.

8.4 Implications

In summary, the new algorithms provided accurate estimates of time-varying,

intrinsic and reflex dynamic stiffness using only a few periodic, input-output data

segments of short duration. These methods greatly facilitate the study of joint

neuromechanics during function, and provide new analytical tools to: i) validate

hypothesis regarding the neural control of movement, ii) study and characterize neu-

romuscular diseases, iii) advance the field of prosthesis design by providing a better
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understanding of the neuromechanics of human joints. The contributions of this

thesis to these research fields is discussed in detail next

8.4.1 Neural control of movement

Accurate measurements of intrinsic and reflex stiffness and their modulation

during movement could help to solve the ongoing debate between different theories

regarding the neural control of movement. Two of the most widely discussed theories,

the equilibrium point hypothesis and the internal model hypothesis, consider that

the modulation of dynamic joint stiffness is either a precursor or a consequence of

the movement. The equilibrium point hypothesis postulates that the central nervous

systems controls the movement of limbs by controlling the stiffness of associated

joints. In this theory, movement is accomplished by modulating the visco-elastic

properties of muscle via the tonic stretch reflex, whose threshold of activation is

altered during voluntary movements by central control signals, signals from sensory

receptors in other muscles, and history of activation [13, 14, 229]. The internal model

hypothesis suggests that the central nervous system learns internal models of the

complex interactions within the body and between the body and the environment,and

predicts the exact forces needed to generate the movement [15, 16].

Our results presented for the first time the modulation of the intrinsic and reflex

components of dynamic joint stiffness during an imposed movement. They show that

the gain of these mechanisms change significantly during the movement and that the

gain of the stretch reflex seems to lead that of the intrinsic stiffness. It was also

observed that the elastic properties of the joint are lower during movement than

that observed during constant posture experiments at matching positions.
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Our results are more consistent with the equilibrium point framework, as this

hypothesis predicts modulation in joint neuromechanical properties during movement

due to the excitation of stretch reflex mechanism at certain muscle length. However

it is impossible to reach any conclusion based on the results presented here as they

do not involve voluntary movements. Other experiments exploring the modulation of

intrinsic and reflex mechanisms during voluntary movements must be performed to

validate these hypothesis; the methods introduced in this thesis can be used to verify

if the modulation in dynamics stiffness precedes the movement, as indicated by the

equilibrium point hypothesis, or is a consequence of the movement, as indicated by

the internal model hypothesis.

8.4.2 Neuromuscular diseases and clinical applications

Clinical manipulations of joints to assess pathologies in muscle tone involve

movement, as clinicians know that movement is required to fully characterize the

joint neuromechanical properties. However, clinicians can only provide a subjective

measure of the joint properties, and current methods for the objective measurement

of joint dynamic stiffness are limited to constant posture experiments, limiting their

ability to provide clinically relevant information [17]. The methods developed here be

useful to diagnose neuromuscular diseases and the evaluate the effectiveness of treat-

ment programs because they can provide objective measurements of the joint neu-

romechanical properties during time-varying experiments, which involve movement

and/or variation of voluntary muscle activation, and can be used to complement the

information provided by current methods.
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Another application of the methods and models introduced in this thesis is in

the improvement of Functional Electrical Stimulation (FES) systems. These sys-

tems restore function to paralyzed limbs, using mathematical models of the limbs

and joints biomechanics to estimate the torques required to produce a desired move-

ment [196]. Recent advancements in FES have shown that simple, lumped models

of joint biomechanics, such as the ones presented here, provide less error than more

complete, physiologically inspired models [197, 198]. Moreover, experimental results

have demonstrated that models used in FES systems must be able to capture the

modulation of joint biomechanics during movement [198]. Therefore, we suggest that

our model and identification algorithms are well suited for use in FES control and

will provide an improvement over existing technologies.

8.4.3 Design of prosthesis devices

State of the art powered prosthesis makes use of series elastic components that

included a series stiffness tuned to the stiffness of the biological joint to minimize the

mechanical work required by an electric motor [230]. Alternatively, a control system

may be used to emulate a series of passive impedance functions at the artificial joint

in order to reproduce the behavior of a healthy joint [231]. Both these technologies

require an accurate measurement of the joint stiffness during the desired movement,

something that was not possible in the past and can now be achieved using the

methods introduced here.
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8.5 Future Work

8.5.1 Closed-loop identification

The pilot experiments presented here involved the interaction of the ankle joint

with an infinitely stiff load. However, most functional situations involve the interac-

tion of the joint with a compliant load. In those cases, joint position and torque are

connected by a feedback loop, and the estimation of joint neuromechanical properties

becomes a closed-loop identification problem.

Here, non-linear, closed-loop identification methods are required to estimate the

parameters of the intrinsic and reflex components. Furthermore, during function, the

parameters of the parallel-cascade model will be time-varying, so that novel, time-

varying identification algorithms that work with closed-loop data are required. The

methods proposed here, that make use of instrumental-variables, can be modified to

deal with closed-loop system by selecting an appropriate instrumental variable [183].

Furthermore, the basis function expansion approach for identification of time-varying

systems, is not bounded to the model structure, so that it can be directly applied to

closed-loop systems. Therefore, the new algorithm can be applied to data acquired

in closed-loop by selecting an adequate instrumental-variable.

This time-varying, closed-loop identification algorithm can be useful to the study

of ankle dynamic stiffness during upright stance where the body is considered as a

compliant load with that the ankle is interacting.
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8.5.2 Linear-parameter-varying methods

LPV models are an alternative to TV models that assume that the model pa-

rameters are modulated by a measurable or estimable signal called scheduling vari-

able, and relate the changes in the model parameters with an underlying modulat-

ing signal. Given the advantages and a limitations of the time-varying and linear-

parameter-varying approaches, is clear that both methods are complementary. The

time-varying method, which makes little assumptions about the parameters time-

course, can be used as a first step to determine possible scheduling variables and

their relations with the model parameters. Afterwards, the linear-parameter-varying

approach can be used to determine a global model that describes the system as a

function of the underlying, modulation variables.

The results presented here indicate that determining the scheduling variables

and their relations with the intrinsic and reflex stiffness during function will be a

daunting task, as both mechanisms seem to be influenced by the immediate history

of contraction and muscle length changes, and so any model that attempt to capture

the nonlinear characteristics of joint neuromechanics must include these dynamic

relations.
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APPENDIX A
Background

This chapter provides a summary of the characteristics and properties of the

neuromuscular system, and presents some background information related to the

anatomy and function of the ankle joint. It starts by introducing some basic concepts

in muscle physiology and peripheral sensor receptors, it then introduces the stretch

reflex and the neuromuscular mechanisms involved in it. It ends with an overview of

the anatomy and function of the ankle joint.

A.1 Neuromuscular system

There are three types of muscles in the human body: skeletal, smooth and

cardiac. Skeletal muscles are in charge of moving the limbs under voluntary and

involuntary activation, and providing postural support for the body. Smooth mus-

cles are involuntary activated muscles that line blood vessels, airways and the gut.

Cardiac muscles are found in the heart and their purpose is to involuntarily contract

the heart and pump blood through the body.

A.1.1 Skeletal muscle physiology

Skeletal muscle is divided into parallel fascicles, composed of smaller, string-like,

multinucleated cells called muscle fibers. Thus, as Figure A–1A shows, each muscle

is composed of hundreds of thousands of independent contractile elements arranged

in parallel, and in series for longer muscles.
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Figure A–1: Organization of skeletal muscle. A. Relationship between myofibrils,
membrane, transverse tubule system, and sarcoplastic reticulum. B. Sarcomere. C.
Details of the thin and tick filaments. Adapted from [3]
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As Figure A–1B shows, each muscle fiber contains many myofibrils, consisting of

longitudinally repeated cylindrical units, called sarcomeres. Each sarcomere contains

contractile proteins, organized into a regular matrix of thick and thin filaments,

and bounded by Z-disks. The sarcomere is the functional unit in skeletal muscle,

all myofibrils in a muscle fiber change length together due to the non-contractile

elements that link them. Each muscle fiber has about 20.000 sarcomeres in series [3].

The thin filaments project in both directions from the Z-disks. On the other

hand, the thick filaments are discontinuous and float in the middle of the sarcom-

ere. As Figure A–1C shows, the thin filaments are composed by polymerized actin

monomeres arranged as a helix, troponin and tropomyosin. The thick filaments are

comprised of myosin molecules entwined together. These molecules have globular

heads that stick out from the sides of the thick filaments.

Organization

Muscles are usually controlled by large motor neurons whose cell bodies lie in

the spinal cord or brain stem. As Figure A–2 shows, the axon of each motor neuron

exits the spinal cord through a ventral root, or when located in the brain stem, the

axon exits via a cranial nerve. Once it reaches the muscle it controls, it branches

widely to innervate hundreds of fibers scattered over the muscle. Each muscle fiber

is innervated by one motor unit around its midpoint. A muscle unit refers to the

ensemble of fibers innervated by a single motor neuron; the motor neuron and muscle

unit together are called motor unit.
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Figure A–2: Organization of the neuromuscular system. Adapted from [3]

Contractile mechanics

The connection between a motor neuron and a muscle fiber is by way of a chem-

ical synapse called an end-plate. As Figure A–3 shows, the motor neuron terminal is

filled with vesicles containing the neurotransmitter acetylcholine, while the motor end

plate contains many acetylcholine receptors. Once the neuron releases enough neu-

rotransmitter, these bind to ligand-gated ion channels in the postsynaptic membrane

in the muscle and produce the diffusion of sodium and potassium across the recep-

tors depolarizing the end-plate; this opens voltage-gated sodium channels, further

increasing the inflow of ions allowing for firing of an action potential. The acetyl-

choline released from the motor neuron is rapidly hydrolyzed by acetylcholinesterase,

leaving the muscle fiber ready to respond to the next action potential.
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Figure A–3: Chemical connection between nervous system and muscle. Adapted
from [4]

The action potential propagates relatively slowly (3-5 m/s) in both directions

away from the end-plate region [3]. These give rise to relatively large potential

gradients in the extracellular fluid around the muscle fiber.

When the action potential propagates along the surface of the muscle fiber, it

depolarizes the transverse tubules within the muscle fiber, motivating the realize of

calcium from the sacroplasmic reticulum, which diffuses passively among the myofil-

aments, and binds reversibly to troponin in the thin filaments.

As Figure A–4 shows, once the calcium binds into the troponin, there is a con-

formational change in the thin filament that exposes actin-binding sites, allowing the

myosin heads to attach and form cross bridges between the thick and thin filaments.

The attached myosin heads rotate, in a movement called power stroke, releasing ADP

and Pi, and exerting longitudinal forces that pull the thick and thin filaments into

greater overlap, shortening the muscle fiber and producing force. At the end of the

power stroke ATP binds to the myosin head, detaching it from the thin filament.
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Figure A–4: Contraction is produced by cyclical attachment and detachment of
myosin heads on adjacent thin filaments. Adapted from [5]
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The chemical energy released by dephosphrylation of the ATP is used to recock the

myosin heads for attachment to another binding site and produce other power stoke.

The release of calcium by the sacroplasmic reticulum is very rapid, but it may

take up to 50ms to activate the thin filaments fully and for cross bridges to form.

The free calcium is rapidly taken up causing the number of cross bridges to decrees

over a period of 80 to 200 ms [3]. Consequently, the force produced by a single

action potential is small. If another action potential occurs before all the calcium

released by the first action potential has been taken up, more cross bridges will form,

resulting in a greater output force. The higher the frequency of action potentials, the

higher the force that will be generated up to the point where all cross bridge binding

sites are continuously activated and the force output no longer shows any ripples.

Figure A–5 depicts this phenomenon which is called a fused tetanus, or maximal

tetanic contraction.

Force-length, force-velocity relations

The total force that can be measured at the tendon reflects the sum of the

passive tension generated in the muscle plus the active tension generated by the

cross bridges. This force depends on three factors: the force produced by each cross-

bridge, the number of cross-bridges and the velocity of the cross bridge motion.

Cross bridges can form only in regions of the sarcomere where myosin heads

lie adjacent to actin filaments. Thus, as Figure A–6A illustrates, when a muscle

fiber is stretched far enough, the overlap region decreases so that no active force can

be generated. However, the passive force, produced by stretched fibers, increases

substantially with the muscle length. Similarly, when the muscle is shortened, the
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Figure A–5: The active tension in a muscle varies with the rate of stimulation of the
muscle nerve. Adapted from [3]
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Figure A–6: Force-Length, and Force-Velocity relations for individual muscle fibers.
Adapted from [6]

progressive overlap of thin filaments will occlude the potential attachment sites and

no more cross bridges can be formed. Once the Z-disks reach their minimum distance,

no more active force can be produced.

The rate at which cross bridge motion occurs is also an important factor in

force generation. Shortening the muscle causes the myosin heads to spend more time

near the end of their power stroke, where they produce less contractile force, and in

detaching, recocking, and reattaching, where they produce no force. On the other

hand, when the muscle is lengthening, the mysion heads spend more time stretched

past their angle of attachment and little time in the unattached state because they

do not need to be recocked after being pulled away from the actin. Consequently,

contractile force rises rapidly and tends to stay high.

Types of muscle fibers

There are three different types of muscle fibers, each specialized for certain task

and with different metabolic properties. Most muscles are composed of a mix of
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Figure A–7: Slow, fast fatigue-resistant, and fast fatigable motor units vary in twitch,
tetanic force, and fatigability. Adapted from [3]

these three fiber types: slow twitch fiber, and two types of fast twitch fibers. All the

muscle fibers innervated by a single motor neuron are of the same type.

As Figure A–7 shows, slow-twitch or type I fibers, produce a force that rises and

falls slowly in response to an action potential. Muscles composed mainly of type I

fibers can produce relatively small amounts of force for long periods of time. This

types of fibers use oxygen and glucose supplied by the bloodstream to generate the

ATP needed for force production. In fast-twitch, or type II fibers, the force produces

rises and falls rapidly. There are two different types of fast-twitch fibers according to

the metabolic process. Type IIA fibers are fatigue resistant, fast-twitch fibers; they

are slower that type IIB but can generate force for longer periods of time.
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A.1.2 From muscle force to movement

The human body has over 250 muscles, each with a distinct mechanical action

at one or more joints. The simplest type of joint is a hinge, which allows movement

in only one plane. Because muscles can only pull, these joint require two muscles

pulling in opposite directions. Other types of joints permit movement in all the axes

of rotation, and a few move primary in translation. The degrees of freedom of a

joint are the number of independently controllable axes of motion and ranges from

one, for a simple hinge joint, up to a maximum of six. In a multiarticular limb the

degrees of freedom are the sum of the degrees of freedom of all of its joints.

Each muscle produces a joint torque that is the product of the contractile force

and its moment arm at that joint. As Figure A–8 shows, the moment arm is the

length of a perpendicular from the line of pull of the muscle to the center of rotation

of the joint. Unlike the idealized view presented in the figure, the moment arm of

real muscle often changes when the joint angle changes [7]. The net torque at a joint

is the sum of the torques produced by the muscles that cross the joint.

A.1.3 Peripheral sensor receptors

Muscle spindles

Muscle spindles are small encapsulated sensory receptors that have a spindle-like

shape located within the fleshy part of the muscle. Their main function is to signal

changes in muscle length. As changes in the muscle length are related to changes in

the angles of the joints that the muscle cross, muscle spindles can also inform the

central nervous system about the relative positions of the body segments.
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Figure A–8: a) Idealized view of a hinge joint actuated by a single muscle. b) The
torque at the joint can be estimated by measuring the force produced by the muscle
(fm) and the moment arm (r). Adapted from [7]
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As Figure A–9A shows, the three main components of the muscle spindle are

: 1) intrafusal muscle fibers whose central regions are non-contractile; 2) sensory

endings that originate from the central region of the intrafusal fibers; and 3) sensory

endings that originate from the polar region of the intrafusal fibers.

When the central region of the spindle is stretched, the sensory endings are

also stretched and increase their firing rate. Muscle spindles are arranged in parallel

with the fibers in the body of the muscle, the extrafusal fibers; consequently, the

intrafusal fibers change length with the rest of the muscle. Thus, when the muscle

is stretched, the activity in the sensory ending increases; and when the muscle is

shortened, spindles activity decreases.

The muscle spindles are innervated by small-diameter, motor neurons, called

gamma-motor neurons. These are different from the large-diameter, motor neurons

that innervate the extrafusal fibers that form the body of the muscle. The contraction

of the intrafusal fibers does not contribute to the force produced by the muscle.

Rather, the gamma-motor neurons provide a mechanism to adjust the sensitivity of

the muscle spindles.

As Figure A–9B shows, there are two types of intrafusal fibers: nuclear bags and

nuclear chain fibers. There are two types of nuclear bags: dynamic and static groups.

Moreover, there are two types of sensory endings: primary or Ia, and secondary or II

fibers. Ia fibers spiral around the central region of the intrafusal fibers, the endings

of the type II fibers are located adjacent to the center of the static nuclear bag and

the nuclear chain. The gamma-motor neuron can also be divided in two classes:
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Figure A–9: Muscle spindle: A. The main components of the muscle spindle are in-
trafusal muscle fibers, afferent sensory fiber endings, and efferent motor fiber endings.
B. The muscle spindle contains three types of intrafusal fibers: dynamic nuclear bag,
static nuclear bag, and nuclear chain fibers. Two types of motor neurons innervate
different intrafusal fibers. Dynamic gamma motor neurons innervate only dynamic
bag fibers; static gamma motor neurons innervate various combinations of chain and
static bag fibers. C. Selective stimulation of the two types of gamma motor neu-
rons has different effects on the firing of the primary sensory endings in the spindle.
Adapted from [3]
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dynamic gamma neurons that innervate the dynamic nuclear bag fibers, and static

gamma-motor neurons that innervate the remaining intrafusal fibers.

This complex internal structure gives the spindle the possibility to differentiate

between steady-state and dynamic activities. The tonic discharge of both primary

and secondary afferents inform the central nervous system of the steady-state length

of the muscle. In addition, the primary endings are very sensitive to changes in

muscle velocity, so that they are able to inform about the speed of movement and

small, unexpected changes in muscle length.

The central nervous system can independently adjust the dynamic and static

sensitivity of the sensory fibers from muscle spindles via the dynamic and static

gamma motor neurons. In addition, gamma motor neurons maintain the tension

in the muscle spindles during muscle contraction. Without this alpha-gamma co-

activation, the spindle would slack during muscle contraction and loss its responsive-

ness to changes in muscle length. This mechanism assures that the intrafusal fibers

in the spindle remain under tension over the full range of muscle lengths.

Golgi tendon organ

Golgi tendons organs are sensory receptors connected in series with a group of

muscle fibers and located in the junction between the muscle fibers and the tendon.

These encapsulated organs are innervated by a single axon (Ib fibers), this axon losses

its myelination when it enters the capsule and branches into many fine endings, each

of which intertwines among the braided collagen fascicles. Stretching of the tendon

organ straightens the collagen fibers, thus compressing the nerve endings and causing

them to fire.
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Tendon organs are most sensitive to changes in muscle tension. Studies have

shown that the average level of activity in the tendon organs in a muscle gives a fairly

good measure of the total force in a contracting muscle [232]. Thus, tendon organs

continuously inform the central nervous system about the force in a contracting

muscle.

Other sensors

There are other sensors that inform the central nervous system about the current

state of the limbs. Among those, the cutaneous and joint receptors are the most

important for movement control. Information from these sensors converges along

with the information from the golgi tendon organ and muscle spindles in the spinal

column. The integration of this information may allow for precise spinal control of

muscle tension in activities such as grasping a delicate object [3].

A.1.4 Spinal reflexes

The central nervous system uses the sensory information provided by the dif-

ferent sensors to regulate movement, without this sensory input movements tend to

imprecise and tasks that require fine coordination are impossible [3].

Spinal reflexes arise from sensory stimuli from receptors in the skin, muscle,

tendons and joints. Its neural circuitry is contained in the spinal cord and so their

mechanical involved response is involuntary. However, spinal reflexes are heavily

modulated by central commands, which allows them to be modified and adapt to

different tasks [3, 178].
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Stretch reflex

The stretch reflex refers to an involuntary contraction of the muscle that occurs

when this is lengthened. This muscle spindle mediated mechanism was firs described

by Liddell and Sherrington [233], who carried their experiment in de-cerebrated cats.

During their experiments, they flexed passively the extended cat’s hindlimb and in-

creased contraction of the muscles being stretched. They also found that stretching

the muscle caused the antagonist muscle to relax. It is now known that de-cerebrate

animals have stronger reflex responses than normal animals because descending path-

ways from the cerebral cortex and other higher centers of the brain continuously

modulate the strength of stretch reflexes. [3].

As seen in Figure A–10, the muscle spindle, which are responsible for sensing

the muscle stretch or myotasis, make direct connection on the alpha motor neu-

rons, creating a monosynaptic pathway. Ia fibers from the muscle spindle excite the

motor neuron innervating the same muscle (homonymous connections) and those in-

nervating muscles having a similar mechanical function (heteronymous connection).

In addition, Ia fiber have an inhibitory action on alpha motor neurons innervating

antagonist muscles via inhibitory inter-neurons in the spinal column. This mecha-

nism facilitates the reciprocal inhibition of an antagonist muscle to prevent further

lengthening of the stretched muscle.
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Figure A–10: Neural pathways involved in the knee stretch reflex. Adapted from [8]

A.2 The Ankle Joint

A.2.1 Anatomy

Bones

The lower limbs are extensions from the trunk that originate in the gluteal

region, see Figure A–11. Their main functions are to support the body weight and

locomotion. The leg region, the part that lies between the knee and the distal part

of the leg includes the tibia and fibula, the ankle, or talocrular region includes the

medial and lateral malleoli that flank the ankle joint. Finally, the foot region is the

distal part of the lower limb and contains the tarsus, metatarsus and phalanges.

The tibia is the second largest bone of th body, its particular shape at the ends

provides an increase area for articulation and weight transfer. The proximal end of

the tibia possess two smooth articular surfaces that articulate with the large condyles

of the femur. The distal end of the tibia is smaller that the proximal end, the inferior
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Figure A–11: Regions and bones of the lower limb. Adapted from [9]
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surface of the shaft and the surface of the medial malleolus articulate with the talus

and are covered with articular cartilage. The fibula is slender than the tibia and lies

posterolateral to it. Both bones are firmly attached by the tibiofibular syndesmosis.

The tibia serves no role in weight-bearing, its main function is for muscle attachment.

The lateral malleolus at the distal end of the tibia forms the superior component of

the ankle joint, it provides attachment for the ligaments and helps to stabilize the

joint.

As shown in Figure A–12, the talus has a body, neck and head. The superior

surface is griped by both malleoli and receives the body weight from the tibia. The

talus transfers the weight to the calcaneus and forefoot. Most of the talus surface is

covered with articular cartilage. The calcaneus is the largest and strongest bone in

the foot, when standing it transfers most of the body weight from the talus to the

ground

Movements

The ankle joint is a hinge type joint, with movements only in one plain. Dorsi-

flexion, bringing the toes closer to the shin, and plantarflexion, moving the toes away

from the shin, are the only movements that occur at the ankle. Figure A–13 presents

these movements and the general localization of the muscles involved in each one.

Studies have reported that the ankle’s range of motion (ROM) for healthy young

males is between 300 to 600 in plantarflexion and 80 to 200 in dorsiflexion [234, 235];

these values are reduced with aging and disease [236].

228



Figure A–12: Bones of the foot. Adapted from [10]
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Figure A–13: Movements of the ankle and general localization of the involved mus-
cles. Adapted from [9]

Muscles

As shown in Figure A–14, the leg is organized in three compartments: Anterior,

lateral and posterior. The four muscles in the anterior compartment of the leg are

tibialis anterior, extensor digitorum longus, extensor hallucius longus, and fibularis

tertius. These muscles are dorsiflexors of the ankle joint. The long extensors also

serve as extensors of the toes.

As depicted in Figure A–15, the tibialis anterior is the most superficial dorsi-

flexor. It is a slender muscle that lies against the lateral surface of the tibia. Its

tendon is located the farthest from the axis of the ankle joint so that this muscles is

the strongest dorsiflexor.

The muscles in the posterior compartment are in charge of ankle platarflexion,

inversion at the subtalar and transverse tarsal joints, and flexion of the toes. In

230



Figure A–14: Compartment of the leg. TA: Tibialis anterior, EDL: Extensor dig-
itorum longus, EHL: Extensor hallucis longus, FB: Fibularis brevis, FL: Fibularis
longus, TP: Tibialis posterior, FDL: Flexor digitorum longus, FHL: Flexor hallucis
longus, SOL: Soleus, MG: Medial Gastrocnemius. Adapted from [9]

particular, the triceps surae, the collection of the gastrocnemius and soleus muscles,

generates more than 90% of the plantarflexion force [9]. Figure A–16 shows the ori-

gins and attachments of these two muscles; the gastrocnemius is the most superficial

muscle in the posterior compartment. It is a two-heads, two-joints muscle, its acts

both in the knee and ankle joints. However, it cannot exerts its full power in both

joints at the same time. The gastronemius muscle is composed mainly of white,

fast-twitch fibers. The soleus is a large muscle located deep to the gastrocnemius, it

is attached to the fibula and tibia so that it only acts on the ankle joint. The soleus

muscle is composed mainly of red, fatigue resistant, slow-twitch fibers, which makes

them the predominant plantarflexor muscle for standing and strolling.

Both muscles connect to the calcaneal tendon, the thickest and stronger tendon

in the body. As seen in Figure A–16, this tendon is a continuation of the aponeurosis
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Figure A–15: Muscles in the leg. Lateral view. Adapted from [10]
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Figure A–16: Muscles in the leg. Posterior view. Adapted from [9]

formed where the bellies of the gastrocnemius terminate. This tendon receives fibers

from the soleus and gastrocnemius muscles, at the distal end the tendon is tick and

has an almost-round cross section; it then inserts on the posterior surface of the

calcaneal tuberosity by making a 900 turn.

A.2.2 Function

The main function of the lower limbs are standing and walking [9]. When the

person is standing upright only a few of the back and lower limb muscles are active.

The hip and knee joints are in their most stable position (maximal contact of the

articular surfaces for weight transfer) and, as shown in Figure A–17, the ankle joint
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Figure A–17: Relaxed standing. A. Relationship of the line of gravity with the
rotation axis to the hip, knee and ankle joints. B. Asymmetrical weight distribution
around the center of gravity during standing. Adapted from [9]

is less stable, with the line of gravity falling just anterior to the ankle joint. In

consequence, the tendency to fall forward must be counter balanced by activation of

the ankle plantaflexor muscles.

Figure A–18 shows the different phases of locomotion. During the gait cycle, the

ankle joint and related muscles play multiple and vital roles [9]: During heel strike,

the ankle dorsiflexors help to lower the forefoot to the ground, during the early and

mid-stance, when the foot is flat in the ground, the ankle plantarflexors perform
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Figure A–18: Relative position of the hip, knee and ankle joints during the gait
cycle. The stance phase of the cycle was divided into five sub-phases and lasts for
about 60% of the step duration. The swing phase was divided into two sub-phases
and composes about 40% of the cycle.

an eccentricly contraction to stop dorsiflexion. Furthermore, during the terminal

stance, the plantarflexors are in charge of the push off that moves the body forward,

providing more than half of the mechanical power needed for walking [185]. During

the initial and mid-swing, the ankle dorsiflexors are in charge of lifting the foot from

the ground. Finally, these muscles help to position the foot in the correct angle for

heel-strike. In addition, to facilitate the movement of the foot during the difference

phases of walking, ankle dorsiflexors and plantarflexors help to absorb impact forces

during heel-strike which might otherwise destabilize the body [186, 237].
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